期刊文献+

Jacobi算子的Hardy不等式及其应用

Hardy Inequalities for Jacobi Operators and Applications
下载PDF
导出
摘要 该文主要考虑与Jacobi算子相关的Hardy不等式.主要结果之一是求得了相关不等式的最佳常数.作为该不等式的应用之一,该文证明了,不同于欧式空间情形,双曲空间上的Hardy不等式可以整体的增添Brezis—Vazquez型余项. In this paper we consider the Hardy inequalities for Jacobi operators. We compute the sharp constants of these inequalities. As an application, we show the Hardy inequalities on hyperbolic spaces can be globally refined by adding remainder terms like the Brezis-V^zquez improvement, which is contrary to the case of Euclidean spaces.
出处 《数学物理学报(A辑)》 CSCD 北大核心 2016年第4期649-655,共7页 Acta Mathematica Scientia
基金 国家自然科学基金(11501103)资助~~
关键词 Jacobi算子 HARDY不等式 双曲空间 Jacobi operator Hardy inequality Hyperbolic space.
  • 相关文献

参考文献14

  • 1Abdellaoui B, Colorado D, Peral I. Some improved Caffarelli-Kohn-Nirenberg inequalities. Calc Var Partial Differential Equations, 2005, 23:327-345.
  • 2Barbatis G, Filippas S, Tertikas A. A unified approach to improved Lp Hardy inequalities with best constants. Trans Amer Math Soc, 2004, 356:2169-2196.
  • 3Brezis H, Vazquez J. Blow-up solutions of some nonlinear elliptic problems. Rev Mat Univ Comp Madrid, 1997, 10:443-469.
  • 4Filippas S, Moschini L, Tertikas A. Sharp two-sided heat kernel estimates for critical Schrodinger operators on bounded domains. Comm Math Phys, 2007, 273:237-281.
  • 5Filippas S, Tertikas A. Optimizing improved Hardy inequalities. J Funct Anal, 2002, 192:186-233.
  • 6Gazzola F, Crunau H, Mitidieri E. Hardy inequalities with optimal constants and remainder terms. Trans Amer Math Soc, 2004, 356:2149-2168.
  • 7Gkikas K T. Hardy-Sobolev inequalities in unbounded domains and heat kernel estimates. J Func Anal, 2013, 264:837-893.
  • 8Shafrir I. Asymptotic behaviour of minimizing sequences for Hardy inequality. Commun Contemp Math, 2000, 2:151-189.
  • 9Vazquez J L, Zuazua E. The Hardy inequality and the asymptotic behaviour of the heat equation with an inverse-square potential. J Funct Anal, 2000, 173:103-153.
  • 10Kombe I, Ozaydin M. Improved Hardy and Rellich inequalities on Riemannian manifolds. Trans Amer Math Soc, 2009, 361:6191-6203.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部