期刊文献+

可压缩磁流体方程光滑解的爆破性 被引量:1

Blow-Up of Smooth Solutions to the Compressible MHD Equations
下载PDF
导出
摘要 在初始密度和磁通量具有紧支集的条件下,该文证明高维可压缩磁流体方程柯西问题光滑解的爆破现象.其中磁流体方程的黏性系数,热传导系数以及磁扩散系数都是依赖于密度和温度的. In this paper, we prove the blow-up phenomena of smooth solutions to the Cauchy problem for the full compressible MHD equations in arbitrary dimensions, under the assumption that the initial density and magnetic have compact support. Here the coefficients are generalized to a general case which depend on density and temperature.
作者 边东芬 唐童
出处 《数学物理学报(A辑)》 CSCD 北大核心 2016年第4期715-721,共7页 Acta Mathematica Scientia
基金 国家自然科学基金(11501028 11471323 11526073 11271192) 江苏省自然科学基金基金(BK20150794) 中国博士后基金(2015M570939)资助~~
关键词 爆破 可压缩磁流体方程. Blow-up Compressible MHD equations.
  • 相关文献

参考文献1

二级参考文献11

  • 1Beal, J.T., Kato, T., Majda, A. Remarks on the breakdown of smooth solutions for the 3-D Euler equations.Commun. Math. Phys., 94:61-66 (1984)
  • 2Caflish, R.E., Klapper, I., Steel G, Remarks on singularities, dimension and energy dissipation for ideal hydrodynamics and MHD. Commun. Math, Phys., 184:443-455 (1997)
  • 3Chae, D. On the well-posedness of the Euler eqautions in the Triebel-Lizorkin spaces,. Commun. on Pure and App. Math., 15:0654-0678 (2002)
  • 4Coifman, R., Meyer, Y. Au dela des operatteurs pseudodifferentieles. Asterisque 57, Societe Mathematiquede Prance, Paris, 1978
  • 5Giga, Y. Solutions for semilinear parabolic eqautions in LP and regularity of weak solutions of the Navier-Stokes system. J. Differential Eqs., 62:186-212 (1986)
  • 6Kozono, H., Taniuchi, Y. Bilinear estimates in BMO and the Navier-Stokes eqautions. Math. Z., 235:173-194 (2000)
  • 7Kozono, H., Ogawa, T., Taniuchi, Y. The ctitical sobolev inequalities in Besov spaces and regularity criterion. Math. Z., 242:251-278 (2002)
  • 8Miao, C,, Zhang, B. The Cauchy problem for semilincar parabolic equations in Besov spaces, Houston J.Math., 30:829-878 (2004)
  • 9Miao, C., Gu, Y. Space-time estimates for parabolic type operator and application to nonlinear parabolic eqautions. J. Partial Diff. Eqs., 11:301-312 (1998)
  • 10Miao, C. Harmonic analysis and application to partial differential equations, Science Press, Beijing, 2004

共引文献8

同被引文献2

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部