期刊文献+

基于字典学习与图拉普拉斯矩阵的图像降噪 被引量:1

Image Denoising Based on Dictionary Learning and the Graph Laplacian Matrix
下载PDF
导出
摘要 为了获得更好的图像降噪效果,本文为图拉普拉斯矩阵引入正则化项,结合一般稀疏表示降噪模型,提出一种新的图像降噪模型,模型包括数据保真项、图拉普拉斯矩阵正则化项和稀疏约束项;同时提出选取归一化的图拉普拉斯矩阵的特征向量作为字典学习的首字典.仿真实验表明:本模型有较好的降噪效果,处理图像的峰值信噪比比双边滤波(BF)和非局部均值(NLM)高,且图像呈现出更清晰的外观和细节. In order to achieve better image denoising, a new model is proposed by introducing the graph Laplacian matrix into the regularization term and combining it with the general sparse representation denoising model. The model consists of the data fidelity term, the graph Laplaeian matrix regularization term and the sparse constraint term. Also, this paper proposes choosing the eigenvectors of the normalized graph Laplacian matrix as the initial dictionary. The experimental results show that the proposed model achieves good denoising performance, it gains higher PSNR than BF and NLM, and exhibiting clearer appearance and details.
作者 王吉兴
出处 《五邑大学学报(自然科学版)》 CAS 2016年第3期61-66,共6页 Journal of Wuyi University(Natural Science Edition)
关键词 图像降噪 图拉普拉斯矩阵 字典学习 稀疏表示 image denoising the graph Laplacian matrix dictionary learning sparse representation
  • 相关文献

参考文献9

  • 1MILANFAR P. A tour of modern image filtering [J]. IEEE Signal Processing Magazine, 2013, 30(1): 106-128.
  • 2TOMASI C, MANDUCHI R. Bilateral filtering for gray and color images [C]//Proceedings of the SixthInternational Conference on Computer Vision. Bonbay: IEEE, 1998: 839-846.
  • 3BUADES A, COLL B, MOREL J M. A non-local algorithm for image denoising [C]//2005 IEEE ComputerSociety Conference on Computer Vision and Pattern Recognition: Volume 2. [S.l.]. IEEE, 2005: 60-65.
  • 4FREEMAN W T, ADELSON E H. The Design and use of steerable filters [J]. IEEE Transactions on PatternAnalysis & Machine Intelligence, 1991, 13(9): 891-906.
  • 5CANDES E J, DONOHO D L. Recovering edges in Ill-posed inverse problems: optimality of curvelet frames [J].Annals of Statistics, 2000, 30(3): 784-842.
  • 6OLSHAUSER B A, FIELD D J. Emergence of simple-cell receptive field properties by learning a sparse codefor natural images [J]. Nature, 1996,381(6583): 607-609.
  • 7HU Wei, LI Xin, CHEUNG G, et al. Depth map denoising using graph-based transform and group sparsity[C]//Multimedia Signal Processing, 2013 IEEE 15th International Workshop on. Pula: IEEE, 2013: 1-6.
  • 8ZHENG Miao, BU Jiajun, CHEN Chun, et al. Graph regularized sparse coding for image representation [J].IEEE Transactions on Image Processing, 2011, 20(5): 1327-1336.
  • 9PANG Jiahao, CHEUNG G,ORTEGA A, et al. Optimal graph laplacian regularization for natural imagedenoising [C]//2015 IEEE International Conference on Acoustics, Speech and Signal Processing. SouthBrisbane: IEEE, 2015: 2294-2298.

同被引文献5

引证文献1

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部