期刊文献+

基于改进LF算法的PPI网络聚类方法 被引量:1

PPI Network Clustering Method Based on Improved LF Algorithm
下载PDF
导出
摘要 研究蛋白质相互作用(Protein-Protein Interaction,PPI)网络是理解生命活动的重要途径之一,运用数据挖掘中的聚类分析方法去研究蛋白质相互作用已经成为生物信息学的热门领域.作为一种在PPI网络聚类分析中新兴的智能优化算法,蚁群聚类算法因其固有的简单性、灵活性和鲁棒性显示出了巨大应用潜力.将蚁群聚类算法应用到PPI网络聚类中,并进行了改进,提出了一种新的PPI网络聚类算法.算法引入边关联强度的概念并以边关联强度作为相似度参数,对蚁群聚类算法中的拾起/放下策略加以改进.算法在MIPS数据库中的PPI数据集上进行了聚类测试,实验结果表明新算法的聚类效果和运行效率都较为理想. Protein-Protein interactions network research is one the most important ways to understand of life activities. Using the clustering analysis method in data mining to study protein interactions has become popular in the field of bioinformatics. In PPI network clustering analysis, ant colony clustering algorithm as a new intelligent optimization algorithm, shows great potential for application because of its inherent simplicity, flexibility and robustness. Ant colony clustering is introduced into PPI network clustering, and is improved. A new PPI network clustering method is presented. This method modifies the pickup/drop rules of Ant colony algorithm by means of introducing the concept of edge intensity, which regards the edge intensity as similarity paramter to cluster the PPI network. Finally the algorithm is tested on the PPI data in MIPS database. The simulation results show that the new algorithm has better clustering effect and running efficiency.
出处 《湖南工程学院学报(自然科学版)》 2016年第3期56-59,共4页 Journal of Hunan Institute of Engineering(Natural Science Edition)
关键词 PPI网络 蚁群聚类算法 边关联强度 聚类分析 PPI network Ant colony clustering method edge intensity clustering analysis
  • 相关文献

参考文献7

二级参考文献91

  • 1张惟皎,刘春煌,尹晓峰.蚁群算法在数据挖掘中的应用研究[J].计算机工程与应用,2004,40(28):171-173. 被引量:34
  • 2Gavin A C,Superti Furga G. Protein complexes and proteome organization from yeast to man[J]. Curr Opin Chem Biol,2003,7(1) :21-27.
  • 3King A D,Pr2ulj N,Jurisica I. Protein complex prediction via cost-based clustering[J]. Bioinformatics, 2004,20(17) :3013- 3020.
  • 4Girvan M,Newman M E J. Community structure in social and biological networks[J]. Proc Natl Acad Sci, 2002,99 ( 12 ) : 7821-7826.
  • 5Luo F, Yang Y, Chen C F, et al. Modular organization of protein interaction networks[J]. Bioinformatics,2007,23(2) :207-214.
  • 6Spirin V, Mirny L A. Protein complexes and functional modules in molecular networks[J]. Proc Natl Acad Sci,2003,100(21 ) : 12123-12128.
  • 7Palla G,Dernyi I,Farkas I,et al. Uncovering the overlapping community structure of complex networks in nature and society[J]. Nature, 2005,435 (7043) :814-818.
  • 8LiX L,Tan S H,Foo C S,et al. Interaction graph mining for protein complexes using local clique merging[J]. Genome Informatics ,2005,16:260-269.
  • 9Bader G D, Hogue C W, An automated method for finding molecular complexes in large protein interaction networks[J]. BMC Bioinformatics, 200a,4 : 2.
  • 10Altaf-UI-Amin M,Shinbo Y,Mihara K,et al. Development and implementation of an algorithm for detection of protein complexes in large interaction networks[J]. BMC Bioinformatics, 2006,7 : 207.

共引文献53

同被引文献8

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部