期刊文献+

基于WO_x/PEDOT:PSS复合空穴传输层的高效稳定平面异质结钙钛矿太阳电池 被引量:1

WO_x/PEDOT:PSS Double-Layered Hole-Transport Layers for Efficient and Stable Planar Heterojunction Perovskite Solar Cells
下载PDF
导出
摘要 在基于钙钛矿/富勒烯平面异质结的钙钛矿太阳电池中,PEDOT:PSS是最常使用的空穴传输材料.但PEDOT:PSS呈酸性,会腐蚀金属氧化物透明电极,使器件的电极界面稳定性欠佳.本文将高功函的氧化钨(WOx)插入到PEDOT:PSS和FTO之间,形成WOx/PEDOT:PSS复合空穴传输层,这样既可以避免PEDOT:PSS与FTO直接接触,提高器件的稳定性,又可以进一步降低电极界面的接触势垒,从而提升器件的性能.作者研究了复合传输层对透光率、钙钛矿形貌、钙钛矿结晶、光伏性能及器件稳定性的影响.基于WOx/PEDOT:PSS复合空穴传输层的电池效率可以达到12.96%,比单纯的PEDOT:PSS的电池效率(10.56%)提升了22.7%,同时器件的稳定性也得到大幅改善. Poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate)(PEDOT:PSS) is a commonly used hole-transport material in the perovskite solar cells(Per SCs) structure of perovskite/fullerene planer heterojunction, but it also has a negative effect on the stability of device because of its acidity which will corrode metal oxide transparent electrodes. In this work, a WOxhole-transport layer with high work function was inserted into the PEDOT: PSS and FTO to enhance the stability and photovoltaic performance.The inserted WOxlayer not only can avoid direct contact between PEDOT:PSS and FTO, but also can further reduce the contact barrier between the electrode interface. We studied the effect of WOx/PEDOT:PSS double-layered hole transport layers on the optical transmittance, the morphology and crystals of perovskite, the photovoltaic performance and the stability of the devices. The power conversion efficiency(PCE) of Per SCs can be improved from 10.56%(with PEDOT:PSS layer) to 12.96% with WOx/PEDOT:PSS double-layered hole transport layers, and the stability of the device has also been greatly improved.
出处 《电化学》 CAS CSCD 北大核心 2016年第4期382-389,共8页 Journal of Electrochemistry
基金 江苏省科技支撑项目(No.BE2014147-4) 北京市科技计划项目(No.Z141100003314003)资助
关键词 平面异质结 钙钛矿太阳电池 空穴传输层 氧化钨 稳定性 planar heterojunction perovskite solar cells hole transport layer tungsten oxide stability
  • 相关文献

参考文献28

  • 1Dong Q F, Fang Y J, Shao Y C, et al. Electron-hole diffu- sion lengths > 175 μm in solution-grown CH3NH3PbI3 sin- gle crystals[J]. Science, 2015, 347(6225): 967-970.
  • 2Xing G C, Mathews N, Sun S Y, et al. Long-range bal- anced electron- and hole-transport lengths in organic-inor- ganic CH3NH3PbI3[J]. Science. 2013, 342(6156): 344-347.
  • 3Hodes G. Perovskite-based solar cells[J]. Science, 2013, 342 (6156): 317-318.
  • 4Kojima A, Teshima K, Shirai Y, et al. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells [J]. Journal of The American Chemical Society, 131 (17): 6050-6051.
  • 5Smolev S, Ku Z Y, Brueck S R J, et al. Resonant coupling to a dipole absorber inside a metamaterial: Anticrossing of the negative index response[J]. Journal of Vacuum Science & Technology B, 2010, 28(6): 1071-1023.
  • 6Niu G D, Guo X D, Wang L D. Review of recent progress in chemical stability ofperovskite solar cells[J]. Journal of Materials Chemistry A, 2015, 3(17): 8970-8980.
  • 7Tiep N H, Ku Z, Fan H J. Recent advances in improving the stability of perovskite solar cells[J]. Advanced Energy Materials, 2015, 6(3): 1501420.
  • 8Mei A Y, Li X, Liu L F, et al. A hole-conductor-free, fully printable mesoscopic perovskite solar cell with high stabil- ity[J]. Science, 2014, 345(6194): 295-298.
  • 9Chen W, Wu Y Z, Yue Y F, et al. Efficient and stable large-area perovskite solar cells with inorganic charge ex- traction layers[J]. Science, 2015, 350(6263): 944-948.
  • 10You J, Meng L, Song T B, et al. Improved air stability of perovskite solar cells via solution-processed metal oxide transport layers[J]. Nature Nanotechnology, 2015, 11 (1): 75-81.

二级参考文献74

  • 1Yella A, Lee H W, Tsao H N, Yi C, Chandiran A K, Nazeeruddin M K, Diau E W, Yeh C Y, Zakeeruddin S M, Gr?tzel M 2011 Science 334 629.
  • 2Mathew S, Yella A, Gao P, Humphry-Baker R, CurchodBasile F E, Ashari-Astani N, Tavernelli I, Rothlisberger U, NazeeruddinMd K, Gr?tzel M 2014 Nat. Chem. 6 242.
  • 3Kojima A, Teshima K, Shirai Y, Miyasaka T 2009 J. Am. Chem. Soc. 131 6050.
  • 4Burschka J, Pellet N, Moon S J, Humphry-Baker R, Gao P, Nazeeruddin M K, Gr?tzel M 2013 Nature 499 316.
  • 5Liu M, Johnston M B, Snaith H J 2013 Nature 501 395.
  • 6Zhou H, Chen Q, Li G, Luo S, Song T B, Duan H S, Hong Z, You J, Liu Y, Yang Y 2014 Science 345 542.
  • 7Albert V A, Barbazuk W B, dePamphilis C W, Der J P, Leebens-Mack J, Ma H, Palmer J D, Rounsley S, Sankoff D, Schuster S C, Soltis D E, Soltis P S, Wessler S R, Wing R A, Albert V A, Ammiraju J S, Barbazuk W B, Chamala S, Chanderbali A S, dePamphilis C W, Der J P, Determann R, Leebens-Mack J, Ma H, Ralph P, Rounsley S, Schuster S C, Soltis D E, Soltis P S, Talag J, Tomsho L, Walts B, Wanke S, Wing R A, Albert V A, Barbazuk W B, Chamala S, Chanderbali A S, Chang T H, Determann R, Lan T, Soltis D E, Soltis P S, Arikit S, Axtell M J, Ayyampalayam S, Barbazuk W B, Burnette J M 3rd, Chamala S, De Paoli E, dePamphilis C W, Der J P, Estill J C, Farrell N P, Harkess A, Jiao Y, Leebens-Mack J, Liu K, Mei W, Meyers B C, Shahid S, Wafula E, Walts B, Wessler S R, Zhai J, Zhang X, Albert V A, Carretero-Paulet L, dePamphilis C W, Der J P, Jiao Y, Leebens-Mack J, Lyons E, Sankoff D, Tang H, Wafula E, Zheng C, Albert V A, Altman N S, Barbazuk W B, Carretero-Paulet L, dePamphilis C W, Der J P, Estill J C, Jiao Y, Leebens-Mack.
  • 8Kim H S, Im S H, Park N G 2014 J. Phys. Chem. C 118 5615.
  • 9Sun S, Salim T, Mathews N, Duchamp M, Boothroyd C, Xing G, Sum T C, Lam Y M 2014 Energ. Environ. Sci. 7 399.
  • 10Tanaka K, Takahashi T, Ban T, Kondo T, Uchida K, Miura N 2003 Solid State Commun. 127 619.

共引文献21

同被引文献5

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部