期刊文献+

云计算中基于多目标优化的动态资源配置方法 被引量:7

Dynamic resource configuration based on multi-objective optimization in cloud computing
下载PDF
导出
摘要 目前,云平台的大多数动态资源分配策略只考虑如何减少激活物理节点的数量来达到节能的目的,以实现绿色计算,但这些资源再配置方案很少考虑到虚拟机放置的稳定性。针对应用负载的动态变化特征,提出一种新的面向多虚拟机分布稳定性的基于多目标优化的动态资源配置方法,结合各应用负载的当前状态和未来的预测数据,综合考虑虚拟机重新放置的开销以及新虚拟机放置状态的稳定性,并设计了面向虚拟机分布稳定性的基于多目标优化的遗传算法(MOGANS)进行求解。仿真实验结果表明,相对于面向节能和多虚拟机重分布开销的遗传算法(GA-NN),MOGANS得到的虚拟机分布方式的稳定时间是GA-NN的10.42倍;同时,MOGANS也较好权衡了多虚拟机分布的稳定性和新旧状态转换所需的虚拟机迁移开销之间的关系。 Currently, most resource reallocation methods in cloud computing mainly aim to how to reduce active physical nodes for green computing, however, node stability of virtual machine placement solution is not considered. According to varying workload information of applications, a new virtual machine placement method based on muhi-objective optimization was proposed for node stability, considering both the overhead of virtual machine reallocation and the stability of new virtual machine placement, and a new Muhi-Objective optimization based Genetic Algorithm for Node Stability (MOGANS) was designed to solve this problem. The simulation results show that, the stability time of Virtual Machine (VM) placement obtained by MOGANS is 10.42 times as long as that of VM placement got by GA-NN ( Genetic Algorithm for green computing and Numbers of migration). Meanwhile, MOGANS can well balance stability time and migration overhead.
出处 《计算机应用》 CSCD 北大核心 2016年第9期2396-2401,2408,共7页 journal of Computer Applications
基金 国家自然科学基金青年项目(61303117) 湖北省自然科学基金面上项目(2014CFB817)~~
关键词 云计算 多目标优化 遗传算法 动态资源分配 虚拟机迁移 cloud computing multi-objective optimization genetic algorithm dynamic resource allocation migration ofvirtual machine
  • 相关文献

参考文献20

  • 1ARMBRUST M, FOX A, GRIFFITH R, et al. Above the clouds: a Berkeley view of cloud computing [EB/OL]. [2016-01-03]. http://www.csc.villanova.edu/~nadi/csc8580/S11/CloudComputing.pdf.
  • 2RAI A, BHAGWAN R, GUHA S. Generalized resource allocation for the cloud [C]// SoCC '12: Proceedings of the 3rd ACM Symposium on Cloud Computing. New York: ACM, 2012:Article No. 15.
  • 3CHEN L, SHEN H. Consolidating complementary VMs with spatial/temporal-awareness in cloud datacenters [C]// Proceedings of the 2014 IEEE Conference on Computer Communications. Piscataway, NJ: IEEE, 2014: 1033-1041.
  • 4WANG W, LI B, LIANG B. Dominant resource fairness in cloud computing systems with heterogeneous servers [C]// Proceedings of the 2014 IEEE Conference on Computer Communications. Piscataway, NJ: IEEE, 2014: 583-591.
  • 5ZHANG L, LI Z, WU C. Dynamic resource provisioning in cloud computing: a randomized auction approach [C]// Proceedings of the 2014 IEEE Conference on Computer Communications. Piscataway: NJ: IEEE, 2014: 433-441.
  • 6ZHOU Z, LIU F, LI Z, et al. When smart grid meets geo-distributed cloud: an auction approach to datacenter demand response [C]// Piscataway of the 2015 IEEE Conference on Computer Communications. Piscataway, NJ: IEEE, 2015: 2650-2658.
  • 7李强,郝沁汾,肖利民,李舟军.云计算中虚拟机放置的自适应管理与多目标优化[J].计算机学报,2011,34(12):2253-2264. 被引量:123
  • 8HERMENIER F, LORCA X, MENAUD J M, et al. Entropy: a consolidation manager for clusters [C]// VEE '09: Proceedings of the 2009 ACM SIGPLAN/SIGOPS International Conference on Virtual Execution Environments. New York: ACM, 2009: 41-50.
  • 9ADAMS K, AGESEN O. A comparison of software and hardware techniques for x86 virtualization [J]. ACM Sigplan Notices, 2006, 41(11): 2-13.
  • 10段凯蓉,张功萱.基于多目标免疫系统算法的云任务调度策略[J].计算机应用,2016,36(2):324-329. 被引量:5

二级参考文献78

  • 1熊聪聪,冯龙,陈丽仙,苏静.云计算中基于遗传算法的任务调度算法研究[J].华中科技大学学报(自然科学版),2012,40(S1):1-4. 被引量:27
  • 2赵昊天,贾传亮,宋砚秋,李玉龙.不确定需求下航空超售问题的鲁棒优化研究[J].中国管理科学,2013,21(S1):98-102. 被引量:3
  • 3罗贺,汪永康,胡笑旋,孙锦波.基于负载均衡的云服务资源配置策略研究[J].中国管理科学,2013,21(S1):121-125. 被引量:3
  • 4朱金福,刘玮,高强.航空客运舱位控制和超售综合静态建模研究[J].中国管理科学,2006,14(5):68-72. 被引量:7
  • 5Armbrust M, Fox A, Griffith R et al. A view of cloud computing. Communications of the ACM, 2010, 53(4): 50 58.
  • 6Patterson D, Brown A, BroadweIl P et al. Recovery oriented computing (ROC).. Motivation, definition, techniques, and case studies. Berkeley: UC Berkeley, Technical Report: UCB/CSD-02-1175 , 2002.
  • 7Clark C, Fraser K, Hand Set al. Live migration of virtual machines//Proceedings of the 2nd USENIX Symposium on Networked Systems Design and Implementation (NSDI'05). Boston, 2005: 273-286.
  • 8Zhu X, Young D, Watson B.J, Wang Z et al. 1000 lslands: An integrated approach to resource management forvirtualized data centers. Cluster Computing, 2008, 12(1): 45-57.
  • 9Li Bo, Li Jian Xin, Huai Jin-Peng et al. EnaCloud: An energy saving application live placement approach for cloud computing environments//Proceedings of the International Conference on Cloud Computing. Bangalore, 2009:17-24.
  • 10Ajiro Y, Tanaka A. Improving packing algorithms for server consolidation//Proceedings of the 33rd International Computer Measurement Group Conference. San Diego, 2007:399-406.

共引文献144

同被引文献41

引证文献7

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部