期刊文献+

基于低密度生成矩阵码的签密方案 被引量:1

Signcryption scheme based on low-density generator-matrix code
下载PDF
导出
摘要 基于编码的密码系统具备抵抗量子计算的天然优势。针对传统的基于Goppa码构造的密码方案存在密文扩展率大和密钥量大的问题,利用低密度生成矩阵(LDGM)码和哈希函数构造了一个可证明安全的签密方案。LDGM码的生成矩阵是稀疏的,能有效减小数据量,哈希函数计算效率很高。方案满足随机预言机下的适应性选择密文攻击下的不可区分性(IND-CCA2)和选择消息攻击下存在性不可伪造(EUF-CMA)安全。在保证数据机密性和完整性的同时,与传统的先签名后加密的方法相比,输出密文总量减少了25%;与"一石二鸟"和SCS签密方案相比,计算效率有较大提高。 Code-based cryptography has natural advantage to resist the attack from quantum computers. Considering the long ciphertext length and the large key size of the traditional Goppa-codes-based cryptography, Low-Density Generator-Matrix (LDGM) code and hash function were used to construct a provably secure signcryption scheme. The generator matrix of LDGM code is sparse, so it can effectively reduce the amount of data, and the hash function is of high computation efficiency. It satisfies IND-CCA2 (INDistinguishability under Adaptive Chosen Ciphertext Attacks) and EUF-CMA (Existential UnForgeability under Chosen Message Attacks) security under random oracle model. As it guarantees data confidentiality and integrality, the ciphertext is reduced by 25% compared with the traditional case of "sign then encrypt"; compared with the "two birds one stone" and the SCS signcryptions, its computational efficiency gets significant improvement.
出处 《计算机应用》 CSCD 北大核心 2016年第9期2459-2464,共6页 journal of Computer Applications
基金 国家自然科学基金资助项目(61572521 61272492)~~
关键词 签密 后量子密码 基于编码的密码系统 低密度奇偶检验码 可证明安全 signcryption post quantum cryptography code-based cryptography Low-Density Generator-Matrix(LDGM) code provably secure
  • 相关文献

参考文献13

  • 1MCELIECE R J. A public-key cryptosystem based on algebraic coding theory [EB/OL]. [2015-10-24]. https://www.cs.colorado.edu/~jrblack/class/csci7000/f03/papers/mceliece.pdf.
  • 2BALDI M. QC-LDPC code-based cryptosystems [M]// BALDI M. QC-LDPC Code-based Cryptography. Berlin: Springer, 2014: 91-117.
  • 3GEORGIEVA M, DE PORTZAMPARC F. Toward secure imple-mentation of McEliece decryption [C]// MANGARD S, POSCHMANN A Y. Constructive Side-Channel Analysis and Secure Design, LNCS 9064. Berlin: Springer, 2015: 141-156.
  • 4张颖,岳殿武.基于代数几何码的公钥密码体制[J].通信学报,2008,29(6):75-81. 被引量:9
  • 5BALDI M, BIANCHI M, MATURO N, et al. Improving the efficiency of the LDPC code-based McEliece cryptosystem through irregular codes [C]// Proceedings of the 2013 IEEE Symposium on Computers and Communications. Washington, DC: IEEE Computer Society, 2013: 197-202.
  • 6BALDI M, BIANCHI M, CHIARALUCE F, et al. Using LDGM codes and sparse syndromes to achieve digital signatures [C]// GABORIT P. Post-Quantum Cryptography, LNCS 7932. Berlin: Springer, 2013: 1-15.
  • 7COURTOIS N T, FINIASZ M, SENDRIER N. How to achieve a McEliece-based digital signature scheme [C]// BOYD C. Advances in Cryptology—ASIACRYPT 2001, LNCS 2248. Berlin: Springer, 2001: 157-174.
  • 8BERLEKAMP E R, MCELIECE R J, VAN TILBORG H C A. On the inherent intractability of certain coding problems [J]. IEEE Transactions on Information Theory, 1978, 24(3): 384-386.
  • 9CHENG J F, MCELIECE R J. Some high-rate near capacity codecs for the Gaussian channel [EB/OL]. [2015-11-14]. http://xueshu.baidu.com/s?wd=paperuri%3A%282738fdc6421751d8f7b9827de8cdfe23%29&filter=sc_long_sign&tn=SE_xueshusource_2kduw22v&sc_vurl=http%3A%2F%2Fciteseerx.ist.psu.edu%2Fviewdoc%2Fdownload%3Bjsessionid%3DECAFAC735A595F2AB5705FB3150963F3%3Fdoi%3D10.1.1.57.6071%26rep%3Drep1%26type%3Dpdf&ie=utf-8&sc_us=13201804057768292757.
  • 10GARCIA-FRIAS J, ZHONG W. Approaching Shannon performance by iterative decoding of linear codes with low-density generator matrix [J]. IEEE Communications Letters, 2003, 7(6): 266-268.

二级参考文献16

  • 1任剑,王新梅,肖国镇.基于矩阵分解的代数几何码的译码[J].通信学报,1996,17(2):27-38. 被引量:2
  • 2BERLEKAMP E R, MCELIECE R J, VAN TILBORG; et al. On the inherent intractability of certain coding problem [J]. IEEE Transactions on Information Theory, 1978, 24: 384-386.
  • 3McELIECE R J. A Public-Key Cryptosystem Based on Algebraic Coding Theory [R]. DSN Progress Report, 1978.42-44, 114-116.
  • 4王新梅.M公钥的推广及通过有扰信道时的性能分析.电子学报,1986,14(4):84-90.
  • 5SUN H M. Improving the security of the McEliece public-key cryptosystem[A]. ASIACRYPT 98[C]. 1998.200-213.
  • 6TSFASMAN M A, VLADUT S G; ZINK T. Modular curves, shimura curves and goppa codes, better than varshamov-gilbert bound[J]. Math Nachrichten, 1982, 104: 13-28.
  • 7EHRHARD D. Achieving the designed error capacity in decoding algebraic geometric codes[J]. IEEE Transactions on Information Theory, 1993, 39(5): 743-751.
  • 8FENG G L, RAO T R N. Decoding of algebraic-geometric codes up to the designed minimum distance[J]. IEEE Transactions on Information Theory, 1993, 39(1): 37-45.
  • 9VAN LINT J H. Algebraic geometric codes, coding theory, design theory[J]. IMA Volume Mathematic Application, 1988, 20:137-162.
  • 10XING C P, CHEN H. Improvements on parameters of one-point AG codes from hermitian curves[J]. IEEE Transactions on Information Theory, 2002, 48(2): 535-537.

共引文献8

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部