期刊文献+

基于字典学习的软件缺陷检测算法 被引量:2

Software defect detection algorithm based on dictionary learning
下载PDF
导出
摘要 针对目前存在的字典学习方法不能有效构造具有鉴别能力字典的问题,提出具有鉴别表示能力的字典学习算法,并将其应用于软件缺陷检测。首先,重新构建稀疏表示模型,通过在目标函数中设计字典鉴别项学习具有鉴别表示能力的字典,使某一类的字典对于本类的样本具有较强的表示能力,对于异类样本的表示效果则很差;其次,添加Fisher准则系数鉴别项,使得不同类的表示系数具有较好的鉴别能力;最后对设计的字典学习模型进行优化求解,以获得具有强鉴别和稀疏表示能力的结构化字典。选择经过预处理的NASA软件缺陷数据集作为实验数据,与主成分分析(PCA)、逻辑回归、决策树、支持向量机(SVM)和代表性的字典学习方法进行对比,结果表明所提出的具有鉴别表示能力的字典学习算法的准确率与F-measure值均有提高,能在改善分类器性能的基础上提高检测精度。 Since the exsiting dictionary learning methods can not effectively construct discriminant structured dictionary, a discriminant dictionary learning method with discriminant and representative ability was proposed and applied in software defect detection. Firstly, sparse representation model was redesigned to train structured dictionary by adding the discriminant constraint term into the object function, which made the class-dictionary have strong representation ability for the corresponding class-samples but poor representation ability for the irrelevant class-samples. Secondly, the Fisher criterion discriminant term was added to make the representative coefficients have discriminant ability in different classes. Finally, the optimization of the designed dictionary learning model was solved to obtain strongly structured and sparsely representative dictionary. The NASA defect dataset was selected as the experiment data, and compared with Principal Component Analysis ( PCA), Logistics Regression (LR), decision tree, Support Vector Machine (SVM) and the typical dictionary learning method, the accuracy and F-measure value of the proposed method were both increased. Experimental results indicate that the proposed method can increase detection accuracy with improving the classifier performance.
出处 《计算机应用》 CSCD 北大核心 2016年第9期2486-2491,共6页 journal of Computer Applications
基金 国家自然科学基金资助项目(71561025) 新疆社会科学基金资助项目(13CTJ023) 新疆自治区高校科研计划项目(XJEDU2013I27)~~
关键词 字典学习 稀疏表示 FISHER准则 软件缺陷检测 机器学习 dictionary learning sparse representation Fisher criterion software defect detection machine learning
  • 相关文献

参考文献25

  • 1BAGGEN R, CORREIA J P, SCHILL K, et al. Standardized code quality benchmarking for improving software maintainability [J]. Software Quality Journal, 2012, 20(2): 287-307.
  • 2SHEPPERD M, SONG Q, SUN Z, et al. Data quality: some comments on the nasa software defect datasets [J]. IEEE Transactions on Software Engineering, 2013, 39(9): 1208-1215.
  • 3MA Y, LUO G, ZENG X, et al. Transfer learning for cross-company software defect prediction [J]. Information and Software Technology, 2012, 54(3): 248-256.
  • 4WANG S, YAO X. Using class imbalance learning for software defect prediction [J]. IEEE Transactions on Reliability, 2013, 62(2): 434-443.
  • 5SONG Q, JIA Z, SHEPPERD M, et al. A general software defect-proneness prediction framework [J]. IEEE Transactions on Software Engineering, 2011, 37(3): 356-370.
  • 6PENG Y, KOU G, WANG G, et al. Ensemble of software defect predictors: an AHP-based evaluation method [J]. International Journal of Information Technology and Decision Making, 2011, 10(1): 187-206.
  • 7ZHENG J. Cost-sensitive boosting neural networks for software defect prediction [J]. Expert Systems with Applications, 2010, 37(6): 4537-4543.
  • 8GRAY D, BOWES D, DAVEY N, et al. Reflections on the NASA MDP data sets [J]. IET Software, 2012, 6(6): 549-558.
  • 9姜慧研,宗茂,刘相莹.基于ACO-SVM的软件缺陷预测模型的研究[J].计算机学报,2011,34(6):1148-1154. 被引量:43
  • 10ELISH K O, ELISH M O. Predicting defect-prone software modules using support vector machines [J]. Journal of Systems and Software, 2008, 81(5): 649-660.

二级参考文献10

  • 1Challagulla V U B, Bastani F B, I-Ling Yen, Paul R A. Empirical assessment of machine learning based software defect prediction techniques//Proceedings of the 10th IEEE International Workshop on Object-Oriented Real-Time Dependable Systems. Washington, DC, USA, 2005:263-270.
  • 2Lyu Michael R. Handbook of Software Reliability Engineering. New York: IEEE Computer Society Press and McGrawHill Book Company, 1996.
  • 3Khoshgoftaar Taghi M, Seliya Naeen. Tree-based software quality estimation models for fault predietion//Proeeedings of the 8th International Symposium on Software Metrics. Washington, 13(3, USA, 2002x 123-128.
  • 4Stich Timothy Janes, Spoerre Julie K, Velasco Tomas. The application of artificial neural networks to monitoring and control of an induction hardening process. Journal of Industrial Technology, 2000, 16(1): 1-11.
  • 5Ohlsson Niclas, Alberg Hans. Predicting fault-prone software modules in telephone switches. IEEE Transactions on Software Engineering, 1996, 22(12): 886-894.
  • 6Khoshgoftaar Taghi M, Seliya Naeem. Software quantity classification modeling using the SPRINT decision tree algorithm//Proceedings of the 14th IEEE International Conference on Tools with Artificial Intelligence. Washington, DC, USA, 2002:365-367.
  • 7Briand L C, Melo W L, Wust J. Assessing the applicability of fault-proneness models across object-oriented software projects. IEEE Transactions on Software Engineering, 2002, 28(7) : 706-720.
  • 8Cortes Corinna, Vapnik Vladimir. Support-vector networks. Machine Learning, 1995, 20(3): 273-297.
  • 9Dorigo M, Gambardella L M. Ant colony system: A cooperative learning approach to the traveling salesman problem. IEEE Transactions on Evolutionary Computation, 1997, 1(1): 53-66.
  • 10Wang X H, Shu P, Cao Let al. A ROC curve method for performance evaluation of support vector machine with optimization strategy. Computer Science Technology and Applications, 2009, (2) :117-120.

共引文献42

同被引文献17

引证文献2

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部