期刊文献+

基于熵和风险态度的二型模糊多属性决策方法 被引量:4

Type-2 fuzzy multiple attribute decision-making method based on entropy and risk attitude
下载PDF
导出
摘要 针对属性权重信息完全未知的二型模糊多属性决策问题,提出了一种基于二型模糊熵和决策者风险态度的决策方法。首先,为了准确测度二型模糊集(T2FS)的不确定性,通过引入模糊因子和犹豫因子建立了二型模糊熵的公理化准则,并基于距离测度给出了对应的计算公式。其次,为了减少整体不确定信息对决策结果的影响,结合二型模糊熵构建非线性规划模型来确定属性权重。同时,将决策者的风险态度引入二型模糊信息的得分函数中并给出具体的决策步骤。最后,通过实例分析验证了该决策方法的可行性,并与现有文献对比发现该决策方法更具有灵活性。 In order to deal with the type-2 fuzzy decision-making problem that the attribute weights are unknown, a decision-making method based on type-2 fuzzy entropy and decision-maker's risk attitude was proposed. Firstly, the axiomatic principles of type-2 fuzzy entropy were constructed by introducing fuzzy factor and hesitancy factor to measure the uncertainty of Type-2 Fuzzy Set (T2FS), and some formulas were also given based on different distance measures. Secondly, in order to decrease effects of decision results caused by uncertain information, a non-linear programming model combined with type-2 fuzzy entropy was constructed to determine the attribute weights. Meanwhile, a score function was proposed by considering decision-maker's risk attitude and the specific decision-making processes were also given. Finally, the feasibility of the proposed method was verified through an example analysis, and the flexibility of the proposed method was also been reflected by comparing with existed references.
出处 《计算机应用》 CSCD 北大核心 2016年第9期2535-2539,共5页 journal of Computer Applications
基金 国家自然科学基金面上项目(71473036) 安徽省高等学校省级自然科学研究重点项目(KJ2016A250) 安徽三联学院校级自然科学重点项目(kjzd2016001)~~
关键词 二型模糊集 二型模糊熵 风险态度 得分函数 多属性决策 Type-2 Fuzzy Set (T2FS) type-2 fuzzy entropy risk attitude score function multiple attribute decision-making
  • 相关文献

参考文献25

  • 1ZADEH L A. Fuzzy sets [J]. Information and Control, 1965, 8(3): 338-353.
  • 2ATANASSOV K T. Intuitionistic fuzzy sets [J]. Fuzzy Sets and Systems, 1986, 20(1): 87-96.
  • 3ATANASSOV K, GARGOV G. Interval valued intuitionistic fuzzy sets [J]. Fuzzy Sets and Systems, 1989, 31(3): 343-349.
  • 4TORRA T. Hesitant fuzzy sets [J]. International Journal of Intelligent Systems, 2010, 25(6): 529-539.
  • 5ZADEH L A. The concept of a linguistic variable and its application to approximate reasoning [J]. Information Sciences, 1975, 8(3): 199-249.
  • 6AGVERO J R, VARGAS A. Calculating functions of interval type-2 fuzzy numbers for fault current analysis [J]. IEEE Transactions on Fuzzy Systems, 2007, 15(1): 31-40.
  • 7GILAN S S, SEBT M H, SHAHHOSSEINI V. Computing with words for hierarchical competency based selection of personnel in construction companies [J]. Applied Soft Computing, 2012, 12(2): 860-871.
  • 8MENDEL J M. Computing with words and its relationship with fuzzistics [J]. Information Sciences, 2007, 177(4): 988-1006.
  • 9MENDEL J M, JOHN R I B. Type-2 fuzzy sets made simple [J]. IEEE Transactions on Fuzzy Systems, 2002, 10(2): 117-127.
  • 10KARNIK N N, MENDEL J M. Operations on type-2 fuzzy sets [J]. Fuzzy Sets and Systems, 2001, 122(2): 327-348.

二级参考文献12

  • 1Zadeh L A. Fuzzy sets[J]. Information and Control, 1965,8(3): 338-353.
  • 2Zadeh L A. The concept of a linguistic variable andits application to approximate reasoning[J]. InformationScience, 1975, 8(3): 199-249.
  • 3Mendel J M, John R I B. Type-2 fuzzy sets made simple[J].IEEE Trans on Fuzzy Systems, 2002, 10(2): 117-127.
  • 4Niewiadomski A. Imprecision measures for type-2fuzzy sets: Applications to linguistic summarization ofdatabases[J]. Lecture Notes in Artificial Intelligence, 2008,5097: 285-294.
  • 5Burillo P, Bustince H. Entropy on intuitionistic fuzzysets and on interval-valued fuzzy sets[J]. Fuzzy Sets andSystems, 1996, 78(3): 305-316.
  • 6De Luca A, Termini S. A definition of a nonprobabilisticentropy in setting of fuzzy sets theory[J]. Information andControl, 1972, 20(4): 301-312.
  • 7PedyrezW. Why triangular membership function[J]. FuzzySets and Systems, 1994, 64(1): 21-30.
  • 8Pedyrez W. Interfaces of fuzzy models: A study in fuzzyinformation processing[J]. Information Science, 1996,90(1-4): 231-280.
  • 9Chen Y H, Wang W J. Fuzzy entropy managementvia scaling, elevation and saturation[J]. Fuzzy Sets andSystems, 1998, 95(2): 173-178.
  • 10Wu D R, Mendel J M. Uncertainty measures for intervaltype-2 fuzzy sets[J]. Information Sciences, 2007, 177(23): 5378-5393.

共引文献16

同被引文献21

引证文献4

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部