摘要
为了解决在实际监控中因为目标遮挡、外观变化和时间过长导致跟踪丢失的问题,提出一种基于随机一致性采样(RANSAC)估计的目标跟踪算法。算法首先在搜索区域提取局部不变特征集,然后利用特征匹配传递性和非参数学习算法从特征集中分离出目标特征,最后对目标特征进行RANSAC估计跟踪目标位置。将算法在不同场景的视频数据集上进行测试,分别从准确率、召回率和综合评价指标F1-Measure三个指标分析算法性能,实验结果表明所提出的算法提高了目标跟踪的准确性,克服了长时间目标跟踪产生的跟踪漂移。
In order to solve tracking failure problem caused by target occlusion, appearance variation and long time tracking in practical monitoring, an object tracking algorithm based on RANdom SAmpling Consensus (RANSAC) estimation was proposed. Firstly, the local invariant feature set in the searching area was extracted. Then the object features were separated from the feature set by using the transfer property of feature matching and non-parametric learning algorithm. At last, the RANSAC estimation of object features was used to track the object location. The algorithm was tested on video data sets with different scenarios and analyzed by using three analysis indicators including accuracy, recall and comprehensive evaluation (F1-Measure). The experimental results show that the proposed method improves target tracking accuracy and overcomes track-drift caused by long time tracking.
出处
《计算机应用》
CSCD
北大核心
2016年第9期2566-2569,2575,共5页
journal of Computer Applications
基金
四川省科技成果转换项目(2014CC0043)~~
关键词
局部不变特征
匹配传递性
非参数学习
随机一致性采样估计
目标跟踪
local feature invariance
transitive matching property
non-parametric learning
RANdom SAmplingConsistency (RANSAC) estimation
object tracking