期刊文献+

基于随机一致性采样估计的目标跟踪算法 被引量:1

Object tracking algorithm based on random sampling consensus estimation
下载PDF
导出
摘要 为了解决在实际监控中因为目标遮挡、外观变化和时间过长导致跟踪丢失的问题,提出一种基于随机一致性采样(RANSAC)估计的目标跟踪算法。算法首先在搜索区域提取局部不变特征集,然后利用特征匹配传递性和非参数学习算法从特征集中分离出目标特征,最后对目标特征进行RANSAC估计跟踪目标位置。将算法在不同场景的视频数据集上进行测试,分别从准确率、召回率和综合评价指标F1-Measure三个指标分析算法性能,实验结果表明所提出的算法提高了目标跟踪的准确性,克服了长时间目标跟踪产生的跟踪漂移。 In order to solve tracking failure problem caused by target occlusion, appearance variation and long time tracking in practical monitoring, an object tracking algorithm based on RANdom SAmpling Consensus (RANSAC) estimation was proposed. Firstly, the local invariant feature set in the searching area was extracted. Then the object features were separated from the feature set by using the transfer property of feature matching and non-parametric learning algorithm. At last, the RANSAC estimation of object features was used to track the object location. The algorithm was tested on video data sets with different scenarios and analyzed by using three analysis indicators including accuracy, recall and comprehensive evaluation (F1-Measure). The experimental results show that the proposed method improves target tracking accuracy and overcomes track-drift caused by long time tracking.
出处 《计算机应用》 CSCD 北大核心 2016年第9期2566-2569,2575,共5页 journal of Computer Applications
基金 四川省科技成果转换项目(2014CC0043)~~
关键词 局部不变特征 匹配传递性 非参数学习 随机一致性采样估计 目标跟踪 local feature invariance transitive matching property non-parametric learning RANdom SAmplingConsistency (RANSAC) estimation object tracking
  • 相关文献

参考文献18

  • 1董慧芬,董保磊,丁小芳,张振.基于相关区域分层的改进Meanshift目标跟踪算法[J].计算机应用,2014,34(A02):286-290. 被引量:5
  • 2习文星,汤心溢.基于随机森林和支持向量机的快速行人检测算法[J].计算机应用,2014,34(A02):283-285. 被引量:6
  • 3付忠良,赵向辉,苗青,姚宇.基于属性组合的集成学习算法[J].计算机应用,2010,30(2):465-468. 被引量:5
  • 4BONIN-FONT F, ORTIZ A, OLIVER G. Visual navigation for mobile robots: a survey [J]. Journal of Intelligent and Robotic Systems, 2008, 53(3): 263-296.
  • 5HU W, XIE D, FU Z, et al. Semantic-based surveillance video retrieval [J]. IEEE Transactions on Image Processing, 2007, 16(4): 1168-1181.
  • 6REMONDINO F. 3-D reconstruction of static human body shape from image sequence [J]. Computer Vision and Image Understanding, 2004, 93(1): 65-85.
  • 7WRIGHT J, YANG A Y, GANESH A, et al. Robust face recognition via sparse representation [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2009, 31(2): 210-227.
  • 8WANG S, LU H, YANG F, et al. Superpixel tracking [C]// Proceedings of the 2011 IEEE International Conference on Computer Vision. Piscataway, NJ: IEEE, 2011:1323-1330.
  • 9DINH T B, VO N, MEDIONI G. Context tracker: exploring supporters and distracters in unconstrained environments [C]// Proceedings of the 2011 IEEE Conference on Computer Vision and Pattern Recognition. Washington, DC: IEEE Computer Society, 2011:1177-1184.
  • 10BABENKO B, YANG M H, BELONGIE S. Robust object tracking with online multiple instance learning [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(8): 1619-1632.

二级参考文献39

  • 1徐琨,贺昱曜,王卫亚.基于CamShift的自适应颜色空间目标跟踪算法[J].计算机应用,2009,29(3):757-760. 被引量:22
  • 2武勃,黄畅,艾海舟,劳世竑.基于连续Adaboost算法的多视角人脸检测[J].计算机研究与发展,2005,42(9):1612-1621. 被引量:66
  • 3贾慧星,章毓晋.车辆辅助驾驶系统中基于计算机视觉的行人检测研究综述[J].自动化学报,2007,33(1):84-90. 被引量:69
  • 4王长军,朱善安.基于Mean Shift的目标平移与旋转跟踪[J].中国图象图形学报,2007,12(8):1367-1371. 被引量:10
  • 5FREUND Y, SCHAPIRE R E. A decision-theoretic generalization of on-line learning and an application to boosting [ J]. Journal of Com-puter and System Sciences, 1997, 55(1) : 119 - 139.
  • 6SCHAPIRE R E. The strength of weak learnability [ J]. Machine Learning, 1990, 5(2) : 197 - 227.
  • 7SCHAPIRE R E, SINGER Y. BoosTexter: A boosting-based system for text categorization [ J]. Machine Learning, 20(10, 39(2):135 -168.
  • 8VIOLA P, JONES M. Robust real-time face detection [ J]. International Journal of Computer Vision, 2004, 57(2) : 137 - 154.
  • 9CHANG S, YANG F, WU W. Nighttime pedestrian detection using thermal imaging based on HOG feature [ C ]// Proceedings of the 2011 International Conference on Computer Science and Electronics Engineering. Piscataway: IEEE, 2011 : 694 -698.
  • 10GALL J, LEMPITSKY V. Class-specific Hough forests for object de- tection[ C] // Proceedings of the 2009 IEEE Computer Society Con- ference on Computer Vision and Pattern Recognition. Washington, DC: IEEE Computer Society, 2009:1022 - 1029.

共引文献13

同被引文献5

引证文献1

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部