1Alais, D., & David, B. (2004). The ventriloquist effect results from near-optimal bimodal integration. Current Biology, 14, 257-262.
2Alexandre, E (2002). A computational perspective on the neural basis of multisensory spatial representations. Nature Reviews, 3, 741-747.
3Battaglia P. W., Jacobs, R. A., & Aslin, R. N. (2003). Bayesian integration of visual and auditory signals for spatial localization. Journal of the Optical Society of America A-optical physics, 20, 1391-1397.
4Bushara, K. O., Grafman, J., & Hallett, M. (2001). Neural correlates of auditory-visual stimulus onset asynchrony detection. Journal of Neuroscience, 21,300-304.
5Calvert, G. A., & Thesen, T. (2004). Multisensory integration: methodological approaches and emerging principles in the human brain. Journal of Physiology, 98, 191-205.
6Colonius, H., & Amdt, P. (2001). A two-stage model for visual-auditory interaction in saccadic latencies. Perception and Psychophysics, 63, 126-147.
7Colonius, H., & Diederich, A. (2002). A maximum-likelihood approach to modeling multisensory enhancement. In T. G. Dietterich, S. Becker, & Z. Ghahramani (Eds.), Advances in neural information processing systems, 14, Cambridge:MIT Press.
8Colonius, H. (2004). Multisensory interaction in saccadic reaction time: a time-window-of- integration model. Journal of Cognitive Neuroscience, 16, 1000-1009.
9Colonius, H., & Diederich, A. (2007). Modeling spatial effects in visual-tactile saccadic reaction time. Perception and Psychophysics, 69, 56-67.
10Connor, S. (2000). Dumbstruck: A cultural history of ventriloquism. Oxford University Press.