期刊文献+

基于深对流云目标的风云二号可见光通道辐射定标 被引量:13

Study on Orbit Radiometric Calibration for FY-2 Visible Band based on Deep Convective Cloud
下载PDF
导出
摘要 介绍了一种采用深对流云目标对风云二号(FY-2)扫描辐射计可见光通道进行辐射定标的方法。以深对流云作为辐射定标参考载体,以AQUA/MODIS获得的深对流云反射率作为辐射基准参考,以GOME-2和辐射模式模拟的DCC光谱进行了光谱响应函数的修正,评估FY-2系列卫星的可见光通道辐射定标精度及其长序列衰减趋势。结果表明:(1)FY-2可见光通道存在不同程度的衰减,FY-2D,FY-2E和FY-2F的年衰减率分别约为1.67%,1.69%和0.81%;(2)与国际推荐的参考仪器AQUA/MODIS的DCC反射率基准相比,风云二号可见光通道业务定标结果与之存在显著差异,其相对偏差了分别达到了39.9%,29%和19.2%。(3)FY-2卫星在轨期间,可见光通道存在一定程度的周期性的波动和跳跃现象。借助深对流云目标很好地实现了FY-2系列气象卫星的可见光辐射定标,获取的辐射定标结果已经作为业务定标更新的重要依据。 A radiometric calibration method is described in this paper by using the deep convective clouds(Deep Convective Cloud,DCC) target for FY-2 visible channel.The deep convective cloud can be used as the radiometric calibration transfer object The on-operational FY-2 radiometric calibration bias and the long-term degradation trend are evaluated according to the AQUA/MODIS instrument as the baseline of radiometric reference and DCC.The results show that:(1) There are different degrees of degradation for FY-2D,FY-2E and FY-2F,among which FY-2D has the biggest degradation due to the longest period.The annual rates of degradation for FY-2D and FY-2E are quite similar,1.67%and 1.69%respectively,whereas the rate for FY-2F is lower with 0.81%;(2) During the period of satellite eclipse,the instruments are not stable and this phenomenon could be detected by the DCC method;(3) There are bias in the the operational radiometric calibration between FY-2 and AQUA/MODIS,which is treated as the the radiometric reference usually.The radiometric calibration method based on DCC could work well in the radiometric calibration for FY-2.The results will help us to understand the degradation of instrument and for quantitative application usage.
出处 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2016年第8期2639-2645,共7页 Spectroscopy and Spectral Analysis
基金 科技部(863)计划(2015AA123704) 国家自然科学基金项目(41475031 41105010 41471304 41590874)资助
关键词 深对流云 辐射定标 风云二号 可见光通道 Deep convective cloud Radiometric calibration FY-2 Visible channel
  • 相关文献

参考文献18

  • 1CHEN Fu-chun, CHEN Gui-lin(陈富春,陈桂林). 量子电子学报, 2007, 24(6): 709.
  • 2GUO Qiang, CHEN Bo-yang, ZHANG Yong, et al(郭 强,陈博洋,张 勇, 等). 气象科技进展,2013,3(6): 6.
  • 3XU Na, HU Xiu-qing, CHEN Lin, et al(徐 娜,胡秀清,陈 林,等).红外与毫米波学报,2012,31(4):319.
  • 4XU Na, CHEN Lin, HU Xiu-qing, et al(徐 娜,陈 林,胡秀清,等).红外与毫米波学报,2013,32(4): 337.
  • 5Hu Xiuqingu, Xu Na, Weng Fuzhong, et al. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51(10): 5008.
  • 6RONG Zhi-guo, ZHANG Yu-xiang, QIU Kang-mu, et al(戎志国, 张玉香, 邱康睦,等). 应用气象学报, 2004, 15(3): 266.
  • 7LI Yuan, ZHANG Yong, LIU Jing-jing, et al(李 元, 张 勇, 刘京晶,等).光学学报, 2009, 29(1): 41.
  • 8Hu Y, Wielicki B A, Yang P, et al. IEEE Transactions on Geoscience and Remote Sensing,2004, 4201):2594.
  • 9Doelling D R,Daniel M,Benjamin R S,et al. IEEE Transactions on Geoscience and Remote Sensing, 2013, 47(3):1147.
  • 10Goldberg M, Ohring G, Butler J,et al. Bull. Amer. Meteor. Soc., 2011, 92(4):467.

同被引文献101

引证文献13

二级引证文献100

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部