期刊文献+

页岩气复杂孔裂隙真实气体传输机理和数学模型 被引量:10

Real gas transport mechanism and mathematical model through complex nanopores and microfractures in shale gas reservoirs
原文传递
导出
摘要 基于滑脱流动和努森扩散,分别以分子之间碰撞频率和分子与壁面碰撞频率占总碰撞频率的比值作为滑脱流动和努森扩散的权重系数,进行权重叠加,建立了页岩气复杂孔裂隙气体传输模型.该模型综合考虑了滑脱效应和真实气体效应,同时还分别考虑了截面类型(圆形和矩形)和形状对气体传输的影响.用公开发表的分子模拟数据验证模型.结果表明:(1)本文模型能够合理地描述页岩气复杂孔裂隙气体传输机理,包括连续流动、滑脱流动和过渡流动;(2)页岩气孔裂隙截面类型和形状影响气体传输能力,相同截面面积,圆形截面孔裂隙气体传输能力大于矩形截面孔裂隙气体传输能力,矩形截面孔裂隙气体传输能力随纵横比增大而减小;与截面类型相比,截面形状对气体传输能力的影响更大;(3)真实气体效应提高了气体传输能力,且这种影响随压力增大而增大,随孔裂隙尺度减小而增大;(4)与圆形截面相比,真实气体效应对矩形截面气体传导率影响更大,且随矩形截面纵横比增大而增大.本文模型能为页岩气准确数值模拟奠定一些理论基础. A model for real gas transport in complex nanopores and microfractures of shale gas reservoirs (SGRs) was proposed on the basis of the weighted superposition of slip flow and Knudsen diffusion, where the ratios of intermolecular collisions and molecules-nanopores or microfractures wall collisions to total collisions are the weighted factors of slip flow and Knudsen diffusion, respectively. The present model takes account of slip effect and real gas effect, additionally, the effect of cross-section type and shape of nanopores or microfractures on gas transport is also considered in this paper. The present model is successfully validated against existing molecular dyanmics simulations data in literature. The results show: (1) the present model is reasonable to describe all of the gas transport mechanisms known, including continuous flow, slip flow and transition flow in nanopores and microfractures of SGRs; (2) cross-section type and shape of nanopores or microfractures both affect gas transport capacity, at the same cross-sectional area, gas transport capacity of nanopores with a circular cross-section is greater than that of nanopores with a rectangular cross-section or microfractures, which decreases with an increasing aspect ratio; and the effect of cross-section shape on gas transport capacity is stronger compared to cross-section type; (3) a real gas effect improves gas transport capacity, which becomes more obvious with an increasing pressure and a decreasing size of nanopores or microfractures; (4) and compared to nanopores with a circular cross-section, the effect of real gas effect on gas transport capacity of nanopores with a rectangular cross-section or microfractures is stronger, and the effect increases with an increasing aspect ratio. The proposed model can provide some theoretical support in numerical simulation of reservoir behavior in SGRs.
出处 《中国科学:技术科学》 EI CSCD 北大核心 2016年第8期851-863,共13页 Scientia Sinica(Technologica)
基金 国家自然科学基金重大项目(批准号:51490654) 国家自然科学基金项目(批准号:51374222) 国家科技重大专项(编号:2011ZX05030-005-04)资助
关键词 页岩气 孔裂隙 截面类型 真实气体 滑脱流动 努森扩散 shale gas reservoirs, nanopores-microfractures, cross-section type, real gas, slip flow, Knudsen diffusion
  • 相关文献

参考文献65

  • 1Dai Y, Johnson J R, Karvan O, et al. Ultem?/ZIF-8 mixed matrix hollow fiber membranes for C02/N2 separations. J Membr Sci, 2012, 401: 76-82.
  • 2Yoshimune M,Yamamoto T, Nakaiwa M, et al. Preparation of highly mesoporous carbon membranes via a sol-gel process using resorcinol and formaldehyde. Carbon, 2008,46: 1031-1036.
  • 3Liu J C, Wei J. Knudsen diffusion in channels and networks. Chem Eng Sci, 2014,111: 1-14.
  • 4Petropoulos J H, Papadokostaki K G. May the Knudsen equation be legitimately, or at least usefully, applied to dilute adsorbable gas flow in mesoporous media. Chem Eng Sci, 2012, 68: 392400.
  • 5Guo X,Huang C, Alexeenko A, et al. Numerical and experimental study of gas flows in 2D and 3D microchannels. J Micromech Microeng, 2008, 18: 1-8.
  • 6Stevanovic N D. A new analytical solution of microchannel gas flow. J Micromech Microeng, 2007, 17: 1695-1702.
  • 7Wu Y, Li J, Ding D, et al. A generalized framework model for the simulation of gas production in unconventional gas reservoirs. SPE J, 2014, 19: 845-857.
  • 8Wu K, Li X,Wang C, et al. Apparent permeability for gas flow in shale reservoirs coupling effects of gas diffusion and desorption. In: SPE/AAPG/SEG Unconventional Resources Technology Conference, Denver, Colorado, USA, 2014.
  • 9Curtis M E, Sondergeld C H, Ambrose R J. Microstructural investigation of gas shales in two and three dimensions using nanometer-scale resolution imaging. AAPG Bull, 2012, 96: 665-677.
  • 10Guo C, Xu J, Wu K, et al. Study on gas flow through nano pores of shale gas reservoirs. Fuel, 2015, 143: 107-117.

二级参考文献86

  • 1《页岩气地质与勘探开发完成丛书》编委会.中国页岩气地质研究进展[M].北京:石油工业出版社,2011.
  • 2SCHETTLER P D, PARMELY C R, JUNIATA C. Gas storage and transport in Devonian shales[J]. SPE Forma- tion Evaluation, 1989,4(3):371-376.
  • 3PERKINS T K, JOHNSTON O C. A review of diffusion and dispersion in porous media[J]. SPE Journal, 1963,3 (1) :70-84.
  • 4COLE M W, HOLTER N S, PFEIFER P. Henry's law of adsorption on a fractal surface[J]. Physical Review B: Con- densed Matter and Materials Physics, 1986,53 (12) : 8806- 8809.
  • 5SHEINDORF C, REBHUN M, SHEINTUCH M. A Fre- undlich-type multieomponent isotherm[J]. Journal of Colloid and Interface Science, 1981,79(1) : 186-142.
  • 6LANGMUIR I. The constitution and fundamental proper- ties of solids and liquids. Part Solids[J]. Journal of the American Chemical Society,1916,38(ll):2221-2295.
  • 7LANGMUIR I. The constitution and fundamental proper- ties of solids and liquids. Part II . Liquids[J]. Journal of the American Chemical Society,1917,89(9) :1848-1906.
  • 8KUUSKRAA V A, SEDWlCK K. Technically recoverable Devonian shale gas in Ohio, West Virginia, and Kentucky [C] // paper 14503-MS presented at the SPE Eastern Re- gional Meeting, 6-8 November 1985, Morgantown, West Virginia, USA. New York..SPE,1985.
  • 9KLINKENBERG L J. The permeability of porous media to liquid and gases [C]//paper 41-200 presented at the Drill- ing and Production Practice. Washington D C.. American Petroleum Institute, 1941.
  • 10FLORENCE F A, RUSHING J A, NEWSHAM K E, et al. Improved permeability prediction relations for low per- meability sands [C] // paper 107954-MS presented at the Rocky Mountain Oil 8 Gas Technology Symposium, 16- 18 April 2007, Denver, Colorado, USA. New York: SPE, 2007.

共引文献116

同被引文献96

引证文献10

二级引证文献40

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部