期刊文献+

基于K-均值聚类的多值有序Logistic回归模型在信用卡信用评级中的应用研究 被引量:5

Multivariate Ordinal Logistic Regression Model and Theirs Application in Credit Scoring Based on K-Means Cluster
下载PDF
导出
摘要 随着全球经济的发展,申请信用卡的人数激增,对于申请人的信用等级的评估显得尤为重要.从申请信用卡的大数据中选取出相对重要的特征变量,通过K-均值聚类方法对客户数据进行分类,分为多个类别.并建立了多值有序的Logistic回归模型.本文的全部输出结果均是在统计软件SAS 9.3环境下实现的,并且采用了SAS宏程序,实现大数据下银行信用卡申请人信用评级的批量数据处理和分析,同时也可将本文的方法推广到其他类似评级分类的大数据处理中. With the development of economy in the world, the number of people applying for credit cards is increasing. So it is very important to determine the credit score. We chose the more important feature variables from the big data sets about the credit card applicant. Then we clustered the applicant customers with K-Means cluster method and divided into several categories. And we built a multivariate ordinal logistic regression model. All the results of our paper were realized in the environment of statistical software SAS 9.3. Then we used the SAS macro program to realize the data processing and analysis of the credit rating of big data in bank. Meanwhile, we can solve similar problem to deal with big data of cluster and rating.
出处 《吉林师范大学学报(自然科学版)》 2016年第3期72-81,共10页 Journal of Jilin Normal University:Natural Science Edition
基金 国家自然科学基金青年基金项目(11301037) 国家自然科学基金面上项目(11571051) 吉林省教育厅"十三五"规划项目(2016317)
关键词 聚类分析 多值有序Logistic模型 SAS宏 信用卡评分 cluster analysis multivariate ordinal logistic model SAS macro program credit scoring
  • 相关文献

参考文献8

二级参考文献42

  • 1冯恩波,肖德云,方崇智.一种基于时序预报神经网络的故障预报方法及其应用[J].自动化学报,1995,21(3):348-352. 被引量:11
  • 2石晓军,肖远文,任若恩.Logistic违约率模型的最优样本配比与分界点研究[J].财经研究,2005,31(9):38-48. 被引量:49
  • 3Baesens B ; Van Gestel T ; Viaene S ; Stepanova M ;Suykens J ; Vanthienen J ( 2003 ) Benchmarking state- ofthe-art classification algorithms for credit scoring,The Journal of the Operational Research Society,54,627 ~ 635.
  • 4Desai,V S ,Crook,J N and Overstreet,G A (1996) A comparison of neural networks and linear scoring models in the credit environment.European Journal of Operational Research,95,24 ~ 37.
  • 5Desai,V S ,Convay,D G ,Crook,J N and Overstreet G A (1997) Credit scoring models in the credit union environment using neural networks and genetic algorithms.IMA Journal of Mathematics Applied in Business and Industry,8,323 ~ 346.
  • 6Rosenberg,E.and Gleit,A.(1994) Quantitative methods in credit management:a survey.Operations Research,42,589 ~ 613.
  • 7Thomas,L C ,Edelman D B and Jonathan N.Crook (2002),Credit Scoring and Its Application,SIAM monographs on mathematical modeling and Computation,Philadelphia.
  • 8Yobas,M.and Crook,J N ( 2000 ) Credit Scoring Using Neural and Evolutionary Techniques.IMA Statistics in Finance,Journal of Mathematics Applied in Business and Industry,11,111 ~ 125.
  • 9J0hnBCaouette EdwardIAltman 石晓军译.演进着的信用风险管理[M].北京:机械工业出版社,2001..
  • 10韩力群.人工神经网络的理论、设计与应用[M].北京:化学工业出版社,2002..

共引文献112

同被引文献26

引证文献5

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部