期刊文献+

静电纺丝PANI/CNT/PEO超级电容器电极的性能研究 被引量:1

Study on electrospinning fibrous electrodes made of PANI/CNT/PEO suspension for supercapacitors
下载PDF
导出
摘要 采用静电纺丝制备高性能、薄膜纤维结构电极的超级电容器。制备了均匀对称的三明治式固态超级电容器,其电极为静电纺丝制备的聚苯胺、多壁碳纳米管、聚氧化乙烯薄膜结构,电解质为聚乙烯醇和硫酸。研究了静电纺丝参数对纤维直径的影响,通过改变纺丝距离和溶液流量可以获得微孔薄膜纤维电极。当纺丝距离从80 mm提高到140 mm,纤维的平均直径从3.22μm降低到1.40μm,相对应电极的比电容从70 F/g上升到95 F/g。用这种纤维结构电极制备的超级电容器表现出很好的循环稳定性,用平均纤维直径1.40μm的电极制作的超级电容器在1 000次充放电之后比电容仍能保持90%。 Electrospinning was used in the preparation of high performance, membrane-like electrodes for supercapacitors. The supercapacitors were assembled with two electrodes and gel electrolytes in a sandwich form. The electrodes were prepared by electrospinning polyaniline (PANI)/multiwalled carbon nanotube (MWCNT)/polyethylene oxide (PEO) compound suspension. The gel electrolyte consisted of polyvinyl alcohol(PVA)/sulfuric acid (H2SO4). Effects of electrospinning parameters on the fiber diameter were studied. Results show that, higher stand-off distance combining with lower suspension flow rate can result in smaller diameter of the electrospun fibers. The average diameters of the fibers decrease from 3.22 μm to 1.40 μm and the corresponding specific capacitance of the electrodes increases from 70 F/g to 95 F/g when the stand-off distance ranges from 80 mm to 140 mm. The supercapacitors using fibrous electrodes in this work show good cyclic stability. The specific capacitance of the electrode with 1.40 μm average fibers diameter can retain 90% after 1 000 charge/discharge cycles.
出处 《电子元件与材料》 CAS CSCD 2016年第9期78-81,共4页 Electronic Components And Materials
基金 国家自然科学基金资助项目(No.51275076 No.51475081)
关键词 超级电容器 静电纺丝 电极 聚苯胺 多壁碳纳米管 聚氧化乙烯 supercapacitor electrospinning electrodes polyaniline multiwalled carbon nanotube polyethylene oxide
  • 相关文献

参考文献2

二级参考文献30

  • 1Geim A K, Novoselov K S. The rise of grapheme. Nat Mater, 2007, 6:183-191.
  • 2Li D, Kaner R B. Graphene-based materials. Science, 2008, 320:1170-1171.
  • 3Park S, Ruoff R S. Chemical methods for the production of grapheme. Nat Nanotech, 2009, 4:217-224.
  • 4Lee C G, Wei X D, Kysar J W, et al. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science, 2008, 321: 385-388.
  • 5Balandin A A, Ghosh S, Bao W Z, et al. Superior thermal conductivity of single-layer grapheme. Nano Lett, 2008, 8:902-907.
  • 6Bolotin K I, Sikes K J, Jiang Z, et al. Ultrahigh electron mobility in suspended grapheme. Solid State Commun, 2008, 146:351-355.
  • 7Stoller M D, Park S, Zhu Y, et al, Graphene-based ultracapacitors. Nano Lett, 2008, 8:3498-3502.
  • 8Zhang Y, Tan Y W, Stormer H L, et al. Experimental observation of the quantum Hall effect and Berry's phase in graphene. Nature, 2005, 438:201-204.
  • 9Stankovich S, I)ikin D A, Dommett G H B, et al. Graphene-based composite materials. Nature, 2006, 442:282-286.
  • 10Wu Y Q, Ye P D, Capano M A, et al. Top-gated graphene field-effect-transistors formed by decomposition of SiC. Appl Phys Lett, 2008, 92: 092102.

共引文献16

同被引文献9

引证文献1

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部