期刊文献+

相变蓄能墙多因素热特性分析及优化研究 被引量:13

Multivariate Thermal Performance Analysis and Optimization for Phase Change Thermal Storage Wallboard
原文传递
导出
摘要 建筑围护结构的热损失是建筑内部热量散失的主要途径。与传统墙体保温材料不同,相变蓄能技术可以利用潜热蓄能达到数倍于普通围护结构的蓄热和热惰性效果。该文针对我国北方地区夏季蓄冷,利用热焓法建立相变蓄能墙体物理模型并进行数值模拟,通过蓄热量、延迟性及熔化过程3个指标为依据来分析相变蓄能墙的因素影响特性。结果表明:夏季相变材料层设置在室内侧位置更有利;随着室内对流换热系数的增大,相变材料层的蓄热量随之增大,而延迟时间减小;相变材料层存在蓄热性能最优的最佳厚度;墙体材料和厚度的选择同样起到关键性作用,墙体材料厚度越大反而越不利于相变材料的蓄热性。该文所得出的优化结论对相变墙结构的优化与应用提供参考。 Heat transmitting through the building envelope was the main route of internal building heat loss. It was different from the traditional wall insulation materials, because phase change energy storage technology could achieve much better effects on heat storage and thermal inertia by using latent heat of PCM than ordinary building envelopes. Aiming at cold storage in the summer of North China, a physical model of phase change heat storage wallboard (PCHSW) was built through an enthalpy method and its numerical simulation was conducted in this paper as well. Factors affecting thermal characteristics of PCHSW were analyzed based on three indexes, i. e. , heat storage capacity, lag time and melting process. According to results, the indoor side was the best position for PCM layer in summer; the heat storage capacity of PCM was enhanced and lag time of PCM reduced with the increase in indoor convective heat transfer coefficient; there was an optimum thickness of the PCM layer based on which the largest heat storage capacity could be achieved ; the material type and thickness of wallboard also played a key role, and the heat storage capacity reduced with the thickness of wallboard increasing. Optimization conclusions in this paper provided referenced to the improvement and application of phase change wallboard structure.
出处 《建筑科学》 CSCD 北大核心 2016年第8期40-46,共7页 Building Science
基金 国家自然科学基金资助项目"相变蓄热墙耦合太阳能热源蓄换热机理及辐射供暖特性研究"(51408184) 天津市自然科学基金资助项目"建筑相变蓄热内围护结构调温机理及效果研究"(15JCQNJC07800) 河北省教育厅优秀青年基金资助项目"被动式相变蓄能墙蓄换热机理及多因素耦合敏感性研究"(YQ2014005) 天津建委科技资助项目"被动房在高速沿线应用研究"(2015-13)
关键词 相变蓄能 热特性 数值模拟 影响因素 最优化 相变材料 phase change thermal storage, thermal performance, dynamic simulation, influence factors, optimization, phase change material (PCM)
  • 相关文献

参考文献13

  • 1徐龙,王海,高艳娜,王军,龙恩深,赵汝和.复合相变材料对轻质围护结构建筑室内热环境调节性能研究[J].建筑科学,2013,29(12):45-49. 被引量:11
  • 2徐小龙,牛润萍,冯国会,黄凯良.太阳房与相变蓄能结合技术应用研究[J].低温建筑技术,2013,35(4):123-125. 被引量:3
  • 3Kim J. -S, Darkwa K. Simulation of an integrated PCM-wallboard system [ J]. International Journal of Energy Research,2003,27(3):215-223.
  • 4肖伟,王馨,张寅平,狄洪发.轻质建筑中相变蓄能石膏板热性能研究[J].建设科技,2008(10):84-88. 被引量:10
  • 5Neeper D A. Thermal dynamics of wallboard with latent heat storage [ J]. Solar Energy, 2000,68(5) ;393-403.
  • 6Koo J, So H,Hong S W, et al. Effects of wallboard design parameters on the thermal storage in buildings [ J ]. Energy & Buildings, 2011 ’ 43(8) : 1947-1951.
  • 7周国兵.温度波作用下建筑内墙定型相变材料板的热特性[J].太阳能学报,2011,32(8):1211-1216. 被引量:8
  • 8Toku g A, Ba§aran T,Yesiigey S C. An experimental and numerical investigation on the use of phase change materials in building elements : The case of a flat roof in Istanbul [ J ]. Energy & Buildings, 2015,102:91-104.
  • 9Meng E, Hang Y , Zhan G, et al. Experimental and numerical study of the thermal performance of a new type of phase change material room [ J ]. Energy Conversion & Management, 2013 , 74 (10) :386-394.
  • 10Evola G,Marietta L, Evola G,et al. The effectiveness of PCM wallboards for the energy refurbishment of lightweight buildings[J]. Energy Procedia, 2014,62 : 13-21.

二级参考文献31

  • 1冯国会,黄凯良,陈其针,刘馨,陆梦喆.相变储能地板热水采暖系统实验研究[J].重庆大学学报(自然科学版),2011,34(S1):52-57. 被引量:22
  • 2刘加平,张继良.黄土高原新窑居[J].建设科技,2004(19):30-31. 被引量:7
  • 3江亿.我国建筑耗能状况及有效的节能途径[J].暖通空调,2005,35(5):30-40. 被引量:615
  • 4刘加平,何泉,杨柳,闫增峰.黄土高原新型窑居建筑[J].建筑与文化,2007(6):39-41. 被引量:23
  • 5林坤平.相变蓄能建筑构件应用原理和效果研究[D].北京:清华大学,2007
  • 6Zhang Y P, Lin K P, Zhang Q L, et al. Ideal thermo- physical properties for free cooling (or heating) buildings with constant thermal physical property material[ J ]. En- ergy Build, 2006, 38(10) :1164-1170.
  • 7Asan H. Numerical computation of time lags and decre- ment factors for different building materials [ J ]. Building and Environment, 2006, 41(4): 615-620.
  • 8Athienitis A K, Liu C, Hawes D, et al. Investigation of the thermal performance of a passive solar test-room with wall latent heat storage [ J ]. Building and Environment, 1997, 32(5) : 405-410.
  • 9Heim D, Clarke J A. Numerical modelling and thermal simulation of PCM-gypsum composites with ESP-r [ J ]. Energy and Buildings, 2004, 36 (8) : 795-805.
  • 10Schossig P, Henning H M, Gschwander S, et al. Micro- encapsulated phase-change materials integrated into con- struction materials [ J ]. Solar Energy Materials & Solar Cells, 2005, 89 (2-3) : 297-306.

共引文献26

同被引文献117

引证文献13

二级引证文献54

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部