期刊文献+

基于全局光流特征的微表情识别 被引量:5

Micro-expression Recognition Based on Global Optical Flow Feature
下载PDF
导出
摘要 以改善微表情识别效果为目标,研究基于梯度的全局光流特征提取算法.针对精细图像间大位移问题,引入多分辨率策略对图像分层,通过迭代重加权最小二乘法逐层优化目标函数,求解最优光流,保证运动跟踪的准确性.为了体现人脸关键部位的动作差异,提出分区的特征统计方法,将光流图像划分为若干矩形区域,在局部区域内归纳各点光流运动情况,增强特征的有效性.实验表明,文中方法提升整体识别率和各类情感区分的准确度. The global optical flow feature extraction algorithm based on gradient is studied to improve the effect of micro-expression recognition. To solve the problem of large displacement between fine images, the multi-resolution strategy is introduced to slice the images, and the iterative reweighted least squares method is used to optimize the objective function layer by layer. Thus, the optimal optical flow is obtained, and the accuracy of motion tracking is ensured. To reflect the action differences in key parts of faces, a partition feature statistic method is proposed. The optical flow image is divided into a number of rectangular regions and in these regions the optical flow motion is concluded. Consequently, the effectiveness of the feature is enhanced. The experimental results show that overall recognition accuracy and discrimination of emotion categories are significantly improved.
出处 《模式识别与人工智能》 EI CSCD 北大核心 2016年第8期760-768,共9页 Pattern Recognition and Artificial Intelligence
基金 吉林省科技发展计划重点基金项目(No.20071152)资助~~
关键词 微表情 特征提取 光流 识别 Micro-expression Feature Extraction Optical Flow Recognition
  • 相关文献

参考文献6

二级参考文献84

  • 1章毓晋.图像处理和分析[M].清华大学出版社,1999,3..
  • 2BreyBB 金惠华 曹庆华 李雅倩译.80×86、奔腾机汇编语言程序设计[M].北京:电子工业出版社,1998..
  • 3何斌 马天予.数字图像处理[M].北京:人民邮电出版社,2000..
  • 4Oliensis J. Fast and Accuracy Algorithms for Projective Multi-Image Structure from Motion. IEEE Trans on Pattern Analysis and Machine Intelligence, 2001,23(6):546-559.
  • 5Alvarez L, Weickert J, et al. Reliable Estimation of Dense Optical Flow Fields with Large Displacements. Imternational Journal of Computer Vision, 2000, 39(1):41-56.
  • 6Proesmans M, Van G L, Pauwels E, OcsterLinck A. Determination of Optical Flow and Its Discontinuities Using Non-Linear Diffusion. In: Proc of the 3rd European Conference on Computer Vision. Stakholm, Sweden, 1994, II: 295-304.
  • 7Enkerrnarm W. Investigation of Multigrid Algorithms for the Estimation of Optical Flow Fields in Image Sequences. Computer Vision, Graphics and Image Processing, 1988, 43:150-177.
  • 8Anandan P. A Computation Framework and an Algorithm for the Measurement of Visual Motion. International Journal of Computer Vision. 1989,2:283-310.
  • 9Battiti R, Amaldi E, Kock C. Computing Optical Flow Across Multiple Scales: An Adaptive Coarse-to-Fine Strategy. International Journal of Computer Vision, 1991, 6(2): 133-145.
  • 10Mabzoun M R, Kim J, et al. A Scaled Multigrid Optical Flow Algorithm Based on the Least RMS Error between Real and Estimated Second Image. Pattern Recognition, 1999, 32:657-670.

共引文献100

同被引文献17

引证文献5

二级引证文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部