摘要
在实赋范线性空间中,给出了广义近似等分线正交的定义和性质以及广义近似保等分线正交映射的定义。运用算子论方法,证明了(δ_1,δ_2)-近似等距是广义近似保等分线正交映射,得到了有界线性映射成为广义近似保等分线正交映射的一些充分条件。
In real normal linear space,it gives the definition and property of the generalized approximate bisectrix orthogonality,and also gives the definition of approximate preserving bisectrix orthogonal mapping,and uses the theory of operator to show(δ_1,δ_2)approximate equidistance is the generalized approximate preserving bisectrix orthogonal map,knowing that the bounded linear mapping is the sufficient condition of generalized approximate preserving bisectrix orthogonal mapping.
出处
《甘肃科学学报》
2016年第4期13-16,22,共5页
Journal of Gansu Sciences
基金
陕西省科技厅科研项目(2014JM1019)
陕西省教育厅科研项目(15JK1221)
商洛学院博士团队服务地方科技创新与经济社会发展能力提升专项子项目(SK2014-01-08)
商洛学院科研项目(14SKY016)
关键词
近似等距
等分线正交
近似等分线正交
广义近似保等分线正交映射
Approximate equidistance
Bisectrix orthogonality
Approximate bisectrix orthogonality
Generalized approximate preserving bisectrix orthogonal mapping