期刊文献+

广义近似保等分线正交映射

Generalized Approximate Preserving Bisectrix Orthogonal Mapping
下载PDF
导出
摘要 在实赋范线性空间中,给出了广义近似等分线正交的定义和性质以及广义近似保等分线正交映射的定义。运用算子论方法,证明了(δ_1,δ_2)-近似等距是广义近似保等分线正交映射,得到了有界线性映射成为广义近似保等分线正交映射的一些充分条件。 In real normal linear space,it gives the definition and property of the generalized approximate bisectrix orthogonality,and also gives the definition of approximate preserving bisectrix orthogonal mapping,and uses the theory of operator to show(δ_1,δ_2)approximate equidistance is the generalized approximate preserving bisectrix orthogonal map,knowing that the bounded linear mapping is the sufficient condition of generalized approximate preserving bisectrix orthogonal mapping.
出处 《甘肃科学学报》 2016年第4期13-16,22,共5页 Journal of Gansu Sciences
基金 陕西省科技厅科研项目(2014JM1019) 陕西省教育厅科研项目(15JK1221) 商洛学院博士团队服务地方科技创新与经济社会发展能力提升专项子项目(SK2014-01-08) 商洛学院科研项目(14SKY016)
关键词 近似等距 等分线正交 近似等分线正交 广义近似保等分线正交映射 Approximate equidistance Bisectrix orthogonality Approximate bisectrix orthogonality Generalized approximate preserving bisectrix orthogonal mapping
  • 相关文献

参考文献22

  • 1Roberts B D.On the Geometry of Abstract Vector Space[J].Tohoku Math J,1934,39:42-59.
  • 2Birkhoff G. Orthogonality in Linear Metric Space[J].Duck Math J, 1935,1 (2) : 169-172.
  • 3James R C.Orthogonality in Normed Linear Space[J].Duck Math J, 1945,12(2) :291-302.
  • 4Diminnie C R.A New Orthogonality Relation for Normed Linear Spaces[J].Math Nachr, 1983,114(1) :197-203.
  • 5Alonso J,Soriano M L.On Height Orthogonality in Normed Linear Spaces[J].Roeky Mt J Math, 1999,29(4) :1 167-1 183.
  • 6Saidi F B.An Extension of the Notion of Orthogonality to Banach Spaces[J].J Math Anal Appl,2002,267(1) :29-47.
  • 7Chmielinski J, Wojcik P. On a p orthogonality[J]. Aequationes Math, 2010,80 ( 1 ) : 45-55.
  • 8Alonso J, Martini H, Wu S.On Birkhoff Orthogonality and Isosceles Orthogonality in Normed Linear Spaces[J].Aequationes Math, 2012, 88(1/2) : 153-189.
  • 9Chmieliflski J.Linear Mappings Approximately Preserving Orthogonality[J].J Math Anal Appl,2005,301(1) :158-169.
  • 10Chmieliflski J.Stability of the Orthogonality Preserving Property in Finite-dimensional Inner Product Spaces[J].J Math Anal Appl,2006, 318(2) :433-443.

二级参考文献23

  • 1崔建莲,侯晋川.C~*代数上保持不定正交性的线性映射[J].数学年刊(A辑),2004,25(4):437-444. 被引量:1
  • 2张芳娟,吉国兴.B(H)上保正交性的可加映射[J].陕西师范大学学报(自然科学版),2005,33(4):21-25. 被引量:5
  • 3ROBERTS B D. On the geometry of abstract vector space[ J]. T6hoku Math J, 1934, 39:42-59.
  • 4BIRKHOFF G. Orthogonality in linear metric space[J]. Duke Math J, 1935, 1 (2) :169-172.
  • 5JAMES R C. Orthogonality in normed linear space[J]. Duke Math J, 1945, 12(2) :291-302.
  • 6FATHI B S. An extension of the notion of orthogonality to Banach spaces[ J]. J Math Anal Appl, 2002, 267( 1 ) :2947.
  • 7DING G G. Isometric and almost isometric operator[J]. Acta Math Sci, 1984, 4(2) :221-226.
  • 8CHMIELI/SKI J. Linear mappings approximately preserving orthogonality[ J]. J Math Anal Appl, 2005, 304( 1 ) :158-169.
  • 9CHMIELI ISKI J. Stability of the orthogonality preserving property in finite-dimensional inner product spaces[ J ]. J Math AnalAppl, 2006, 318(2) :433443.
  • 10BLANCO A, TURN SEK A. On maps that preserve orthogonality in normed spaces [ J ]. Trans Proc Roy Soc Edinburgh: Sect A, 2006, 136(4) :709-716.

共引文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部