期刊文献+

Microstructure and mechanical properties of AlSi10Cu3 alloy with (La+Yb) addition processed by heat treatment 被引量:4

Microstructure and mechanical properties of AlSi10Cu3 alloy with(La+Yb) addition processed by heat treatment
原文传递
导出
摘要 The optical microscopy, scanning electron microscopy (SEM) and energy-dispersive spectrometry (EDS) were used to as-sess the influence of micro-addition of (La+Yb) on the microstructure and mechanical performance of the AlSi10Cu3 alloy in heat treatment conditions. It was shown that the appropriate (La+Yb)addition (0.3 wt.% or 0.6 wt.%) transformed the needle-likeβ-Al5FeSi phase into Chinese script or sphericalα-Al8Fe2Si phase. Eutectic silicon refined the long needle-like particles into granular or round particles at 0.6 wt.% (La+Yb) content. Moreover, the La3Al11 and YbAl3 phases acted as strengthening phases during the heat treatment processing in the alloy with the addition of (La+Yb). Consequently, the alloy with 0.6 wt.% (La+Yb) exhibited an en-hanced mechanical properties response with ultimate tensile strength, elongation, and hardness at 69.35%, 113.26% and 23.61% higher than those of the unmodified alloy, respectively. Further addition (0.9 wt.%) of (La+Yb) resulted in the increasing of the black acicular RE-rich intermetallics during heat treatment, which could aggravate the situation of stress concentration leading to deteriora-tion of the mechanical properties of alloy. The optical microscopy, scanning electron microscopy (SEM) and energy-dispersive spectrometry (EDS) were used to as-sess the influence of micro-addition of (La+Yb) on the microstructure and mechanical performance of the AlSi10Cu3 alloy in heat treatment conditions. It was shown that the appropriate (La+Yb)addition (0.3 wt.% or 0.6 wt.%) transformed the needle-likeβ-Al5FeSi phase into Chinese script or sphericalα-Al8Fe2Si phase. Eutectic silicon refined the long needle-like particles into granular or round particles at 0.6 wt.% (La+Yb) content. Moreover, the La3Al11 and YbAl3 phases acted as strengthening phases during the heat treatment processing in the alloy with the addition of (La+Yb). Consequently, the alloy with 0.6 wt.% (La+Yb) exhibited an en-hanced mechanical properties response with ultimate tensile strength, elongation, and hardness at 69.35%, 113.26% and 23.61% higher than those of the unmodified alloy, respectively. Further addition (0.9 wt.%) of (La+Yb) resulted in the increasing of the black acicular RE-rich intermetallics during heat treatment, which could aggravate the situation of stress concentration leading to deteriora-tion of the mechanical properties of alloy.
出处 《Journal of Rare Earths》 SCIE EI CAS CSCD 2016年第9期938-944,共7页 稀土学报(英文版)
基金 Project supported by the National Natural Science Foundation of China(51364035) Ministry of Education tied up with the Special Research Fund for the Doctoral Program for Higher School(20133601110001) Loading Program of Science and Technology of College of Jiangxi Province(KJLD14003)
关键词 A1Si10Cu3 (La+Yb) heat treatment eutectic Si β-A15FeSi α-A18Fe2Si mechanical properties rare earths A1Si10Cu3 (La+Yb) heat treatment eutectic Si β-A15FeSi α-A18Fe2Si mechanical properties rare earths
  • 相关文献

二级参考文献15

共引文献50

同被引文献42

引证文献4

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部