期刊文献+

谷胱甘肽对VC一步发酵作用的研究

Study on the VC One Step Fermentation Under Glutathione
原文传递
导出
摘要 谷胱甘肽(GSH)能有效促进酮古龙酸杆菌的生长。就GSH对氧化葡萄糖酸杆菌和酮古龙酸杆菌一步混菌发酵的作用进行了探索,为进一步阐明维生素C一步发酵过程中氧化葡萄糖酸杆菌和酮古龙酸杆菌的关系并提供发酵工艺优化的依据。研究发现,在5L的发酵罐中,外加1mg/ml的GSH对混菌的发酵有着显著的促进作用,2-酮-L-古龙酸(2-KGA)产量提高了22.8%。通过16S r DNA荧光定量PCR法测菌数,发现GSH的添加使酮古龙酸杆菌的生长提高到148%,但抑制氧化葡萄糖酸杆菌的生长,使其生物量下降到61%。运用代谢组学方法分析发现,GSH能促进酮古龙酸杆菌的磷酸戊糖、三羧酸循环、硫酸盐等代谢,同时减缓氧化葡萄糖酸杆菌对L-山梨糖的消耗,以促进整个混菌体系的发酵效率。 The aims are to find the effect of GSH on Gluconobacter oxydans in vitamin C one-step fermentation the two bacteria Ketogulonicigenium vulgare and process. It was found that addition of l mg/ml glutathione to the 5L fermentation by K. vulgare-G, oxydans consortium significantly enhanced the production of 2-KGA by 22. 8%. According to the 16S rDNA reahime fluorescence quantitative PCR analysis, the final biomass of K. vulgare increased to 148% and G. oxydans decreased to 61% relative to the control strain. Using the metabolomics methods, it is found that glutathione could promote pentose phosphate pathway, citric acid cycle, the sulfate and other metabolic pathways of K. vulgare, and glutathione can at the same time slow down the consumption of L-sorbose by G. oxydans to improve fermentation efficiency of the consortium.
出处 《中国生物工程杂志》 CAS CSCD 北大核心 2016年第8期38-45,共8页 China Biotechnology
基金 国家重点基础研究发展计划(2014CB745100) 国家自然科学基金(21390203)资助项目
关键词 谷胱甘肽 酮古龙酸杆菌 氧化葡萄糖酸杆菌 代谢组学 Glutathione Ketogulonicigenium vulgare Gluconobacter oxydans Metabolomics
  • 相关文献

参考文献23

  • 1Pompella A, Visvikis A, Paolicchi A, et al. The changing faces of glutathione, a cellular protagonist. Biochemical Pharmacology, 2003, 66 ( 8 ) : 1499-1503.
  • 2Kowalska K, Zalewska M, Milnerowiez H. The application of capillary electrophoresis in the detemlination of glutathione in healthy women' s blood. Journal of Chromatographic Science,2015, 53(2) :353-359.
  • 3Pastore A, Piemonte F, Locatelli M, et al. l)etermination of blood total, reduced, and oxidized glutathione in pediatric subjeets. Clinical Chemistry, 2001 , 47 ( 8 ) : 1467-1469.
  • 4Scholz R W, Graham K S, Gumpricht E, et al. Mechanism of interaction of vitamin E and glutathione in the protection against membrane lipid peroxidation. Annals of the New York Academy of Sciences, 1989, 570( 1 ) :514-517.
  • 5Neri M, Fineschi V, Di Paolo M, et al. Cardiac oxidative stress and inflammatory cytokines response after myocardial infarction. Current Vascular Pharmacology, 2015, 13( 1 ) :26-36.
  • 6Kumar C, lgbaria A0 D' antreaux B, et al. Ghatathione revisited : a vital function in iron metabolism and ancillary role in thiol-redox control. The EMBO Journal, 2011, 30(10) :2044-2056.
  • 7Aquilano K, Baldelli S, Ciriolo M R. Glutathione: new roles in redox signaling tbr an old antioxidant. Frontie~ in Pharmacology, 2014, 5 : 196.
  • 8Hu Y, Wan H, Li J, et al. Enhanced production of l-sorbose in an industrial Gluconobacter ox)dans strain by identification of a strong promoter based on proteomics analysis. Jouroal of Industrial Mierohiology & Bioteehnology, 2015, 42(7 ) :1039-1047.
  • 9Liu L, Li Y, Zhang J, et al. Complete genome sequence of the industrial strain Ketogulonicigenium vulgare WSH-O01. Journal of Bacteriology, 2011 , 193 ( 21 ) :6108-6109.
  • 10Du J, Bai W, Song H, et al. Combinational expression of sorbose/sorbosone dehydrogenases and cofaetor pyrroloquinoline quinone increases 2-keto-l-gulonic acid production in Ketogulonigenium vulgare-Bacillus cereus consortium. Met',d~olic Engineering, 2013, 19:50-56.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部