期刊文献+

理性设计改造牛肠激酶的热稳定性 被引量:3

Engineering Thermostability of Bovine Enterokinase by Rational Design Method
原文传递
导出
摘要 以牛肠激酶作为研究对象,利用理性设计的方法提高其热稳定性。首先通过分子动力学模拟软件Gromacs v 4.5.5,Flex Service以及B-FITTER软件预测出了肠激酶的柔性区Fragment 64~69,Fragment 85~90;然后结合β-转角序列统计学信息以及引入位置原有的残基不参与形成氢键的原则,确立了3个突变位点S67P,R87P以及Y136P;通过Quik Change^(TM)定点突变的方法引入突变位点,并进行了酶热稳定性分析。结果表明,R87P突变体酶的失活半衰(t_(1/2))和T_(50)^(10)较野生型分别提高了3.1 min和11.8℃,同时,动力学常数(K_m/k_(cat))测定结果显示酶活未受到显著影响。该策略有潜力应用于其他工业酶分子的热稳定性改造,为推动生物酶的工业化应用奠定基础。 The rational design method was applied to increase the thermostability of bovine enterokinase. Molecular dynamics software Gromacs v4.5.5, FlexService and B-FITFER were used to predict the flexibility profile of the bovine enterokinase structures. Fragment 64 - 69 and Fragment 85 ~ 90 were confirmed to represent the flexible region. Subsequently, β-turn sequence statistics and stereoscopic criteria of introducing proline were combined to pinpoint appropriate substitution sites by and Y136P) were introduced within the fexible region prolines. Finally, site-directed mutations ( S67P, R87P using Quik ChangeTM method and the thermostability of wild-type and the enterokinase mutants were investigated. The result demonstrated that the half-life (t1/2 ) and half inactivation (T50) temperature of the R87P mutant increased by 3.1 min and 11.8℃ when compared to that of the wild-type enzyme. Meanwhile, the catalytic efficiency ( Km/kcat ) of the R87P mutant enzyme remained nearly unchanged. This strategy has potential to be applied to engineer thermostability of other enzyme, which is beneficial for the wider aoolication of biocatalvsts in industry.
出处 《中国生物工程杂志》 CAS CSCD 北大核心 2016年第8期46-54,共9页 China Biotechnology
基金 国家自然科学基金(31470967) 国家科技重大专项(2011ZX09201-301-05 2014ZX09508006-002-002)
关键词 肠激酶 热稳定性 理性设计 脯氨酸 β-转角 Enterokinase Thermostability Rational design method Prolines β-turn
  • 相关文献

参考文献35

  • 1Choi J M, Han S S, Kim H S. Industrial applications of enzyme biocatalysis. Current status and future aspects. Biotechnology Advances, 2015, 33(7) :1443-1454.
  • 2Eijsink V G, Bjcrk A, G~iseidnes S, et al. Rational engineering of enzyme stability. Journal of Bioteehnology, 2004, 113 ( 1 ) : 105-120.
  • 3Bornscheuer U T, Pohl M. Improved biocatalysts by directed evolution and rational protein design. Current Opinion in Chemical Biology, 2001, 5(2):137-143.
  • 4Schweiker K L, Makhatadze G I. Protein stabilization by the rational design of surface charge-charge interactions. ProteinStructure, Stability, and Interactions, 2009, 490:261-283.
  • 5Yu H, Huang H. Engineering proteins for thermostability through rigidifying flexible sites. Biotechnology Advances, 2014, 32 (2) : 308-315.
  • 6Kamerzell T, Middaugh C. The complex inter-relationships between protein flexibility and stability. Journal of Pharmaceutical Sciences, 2008, 97(9) :3494-3517.
  • 7Van Der Spoel D, Lindahl E, Hess B, et al. GROMACS:fast, flexible, and free. Journal of Computational Chemistry, 2005, 26 (16) :1701-1718.
  • 8Reetz M T, Carballeira J D, Vogel A. Iterative saturation mutagenesis on the basis of B factors as a strategy for increasing protein thermostability. Angewandte Chemic International Edition, 2006, 45 (46) :7745-7751.
  • 9Teilum K, Olsen J G, Kragelund B B. Functional aspects of protein fexibility. Cellular and Molecular Life Sciences, 2009, 66(14) :2231-2247.
  • 10Camps J, Carrillo O, Emperador A, et al. FlexServ : an integrated tool for the analysis of protein flexibility. Bioinformatics, 2009, 25 ( 13 ) : 1709-1710.

同被引文献21

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部