期刊文献+

产玉米黄质的人工酵母细胞的构建 被引量:2

Engineered Yeast Cell for Producing Zeaxanthin
原文传递
导出
摘要 为了实现微生物异源合成天然类胡萝卜素玉米黄质,以一株产β-胡萝卜素的酿酒酵母为底盘细胞,利用合成生物学技术构建人工酵母细胞。通过在染色体整合玉米黄质生物合成关键酶-β-胡萝卜素羟化酶(Crt Z),并对其9种来源进行筛选,发现整合欧文氏菌来源的β-胡萝卜素羟化酶的菌株获得玉米黄质的最高产量。法尼基焦磷酸(FPP)作为合成萜烯类天然产物的重要前体,通过敲除Lpp1和Dpp1基因,削减法尼基焦磷酸向法呢醇的转化,为玉米黄质的合成提供更多的前体,使玉米黄质的产量提高了1.27倍(从29 mg/L提高到36.8 mg/L)。在此基础上,通过增加欧文氏菌来源Crt Z的基因拷贝数及调节其启动子的强弱来增强β-胡萝卜素羟化酶的表达强度,使得玉米黄质的摇瓶产量达到96.2 mg/L,是目前公开报道中产量最高的。 For heterologous synthesize natural carotenoid zeaxanthin in microorganism, a β-carotene producing Saccharomyces cerevisiae was chozen as the host cell to construct engineered yeast with synthetic biology method. The key enzymes β-carotene hydroxylase encoding gene CrtZ from nine sources were integrated in the chromosomal, separately. As the result, the strain carrying CrtZ from Erwinia uredovora achieved the highest titer of zeaxanthin. Moreover, the conversion from farnesyl pyrophosphate (an important precursor for terpenoid natural products) to farnesol was reduced by knocking out gene Lppl and Dppl, providing more precursors for zeaxanthin synthesis. The zeaxanthin yield increased 1.27 fold (from 29 mg/L to 36.8 mg/L) accordingly. Furthermore, a titer of zeaxanthin was achieved as 96.2 mg/L in shake-flask through increasing the CrtZ gene copy number and regulating its promoter' s activity,which is the highest reported microbial titer known.
出处 《中国生物工程杂志》 CAS CSCD 北大核心 2016年第8期64-72,共9页 China Biotechnology
基金 国家高技术研究发展计划资助项目(2012AA02A701)
关键词 合成生物学 玉米黄质 基因工程 酿酒酵母 Synthetic biology Zeaxanthin Gene engineering Saccharomyces cerevisiae
  • 相关文献

参考文献1

二级参考文献29

  • 1冯唐锴,李思光,罗玉萍,匡燕云.植物β-胡萝卜素羟化酶研究进展[J].生物技术通报,2007,23(1):54-58. 被引量:8
  • 2Ballare C L, Scopel A I, Jordan E T, and Vierstra R D, 1994. Signaling among neighboring plants and the development of inequalities in plant populations. Proceedings of the National Academy of Sciences of the USA, 91(21): 10094-10098.
  • 3Bhosale P, Teredesai P V, Lihong J, Ermakov I V, Gellermann W and Bernstein P S, 2005. Production of deuterated zeaxanthin by Flavobaeterium multivorum and its detection by resonance raman and mass spectrometric methods. Biotechnology Letter, 27(21): 1719-1723.
  • 4Cui L, Xue L, Li J, Zhang L and Yan H X, 2010. Charcterization of the glucose-6-phosphate isomerase (GPI) gene from the halotolerant alga Dunaliella salina. Molecular Biology Reports, 37:911-916.
  • 5Davison P A, Hunter C N and Horton P, 2002. Ovexpression of β-carotene hydroxylase enhances stress tolerance in Arabidopsis. Nature, 418 (6894) : 203-206.
  • 6Demmic-Adams S B, Gilmore A M and Adams W W, 1996. In vivo function of carotenoids in higher plants. The FASEB journal, 10:403-412.
  • 7Du H, Wang N, Cui F, Li X, Xiao J, and Xiong L, 2010. Characterization of the β-carotene hydroxylase gene DSM2 conferring drought and oxidative stress resistance by increasing xanthophylIs and abscisic acid snthesis in rice. Plant Physiology, 154 (3): 1304-1318.
  • 8Gotz T, Sandmann G and Romer S, 2002. Expression of a bacterial carotene hydroxylase gene (crtZ) enhances UV tolerance in tobacco. Plant Molecular Biology, 50 (1): 129-142.
  • 9Kato M, Ikoma Y and Matsumoto H, 2004. Accumulation of carotenoids and expression of carotenoid biosynthetic genes during maturation in citrus fruit. Plant Physiology, 134 (2): 824-837.
  • 10Kim J I, Ko K C, Kim C S, and Chung W I, 2001. Isolation and characterization of cDNAs encoding β-carotene hydroxylase in Citrus. Plant Science, 161(5): 1005-1010.

共引文献10

同被引文献15

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部