期刊文献+

锌铁氧体/膨胀石墨复合物的制备及对腐殖酸的去污性能 被引量:3

Preparation of Zinc Ferrite/Expanded Graphite Composites and Decontamination Performance on Humic Acid
下载PDF
导出
摘要 用共沉淀法将强吸附性的膨胀石墨与光催化活性优良的锌铁氧体磁粉复合,制备出锌铁氧体/膨胀石墨复合物(ZF/EG)。用现代分析测试技术表征了样品的组成、微观结构,并研究了去污性能。结果表明,实验制备的碳磁复合物不仅保持了EG原有的特殊结构和优良吸附性能,且具有可观的ZF负载率和光催化活性;腐殖酸的去除率与样品中EG和ZF的质量比(mZF/mEG)、吸附时间和溶液的p H值等因素有关。紫外光照射90 min后,0.1 g mEG/mZF=1的ZF/EG复合物对腐殖酸(溶液浓度为15 mg·L^(-1),体积100 m L,p H=7)的去除率达95%,该复合物4次重复使用后,对腐殖酸的去除率仅下降了4%,是一类具有潜在应用前景的绿色环保的高效废水处理剂。 Zinc ferrite/expanded graphite(ZF/EG) composites were prepared using a simple chemical coprecipitation method.The composition,microstructure,magnetic property,adsorption and photocatalytic activity of the samples were characterized by means of modern analytical techniques.And the results showed that the magnetic composite not only held the original special structure and good adsorption properties of EG,but also had suitable magnetic property and photocatalytic activity.The removal rate of the samples on humic acid depends on the mass ratio of ZF to EG(mZF/mE),adsorption time and p H of the solution,and so on.Removal rate of 0.1 g ZF/EG composite with mEG/mZF=1 on humic acid(15 mg·L^(-1),100 m L,p H=7) was up to 95% under UV irradiation.After repeated use 4 times,removal rate of the composite on the humic acid declined only 4%.In addition,the samples can be recovered conveniently,activated easily and had good performance for recycling,and were thought to be a promising green and high-efficiency material in dealing with wastewater.
出处 《无机化学学报》 SCIE CAS CSCD 北大核心 2016年第9期1526-1534,共9页 Chinese Journal of Inorganic Chemistry
基金 国家自然科学基金(No.21071125)资助项目
关键词 膨胀石墨 锌铁氧体 腐殖酸 吸附 光催化 expanded graphite zinc ferrite humic acid aadsorption photocatalysis
  • 相关文献

参考文献26

  • 1Qin X P, Liu F, Wang G C, et al. Environ. Earth Sci., 2015,73:4011-4017.
  • 2An J, Jho E H, Nam K. J. Hazard. Mater., 2015,286:236-141.
  • 3Pinhedo L, Pelegrini R, Bertazzoli R, et al. Appl. Catal. B Environ., 2005,57:75-81.
  • 4Wang T C, Qu C Z, Ren J Y, et al. Water Res., 2016,89:28 -38.
  • 5HANZhi-Dong(韩志东),ZHANGDa-Wei(张达威),DONGLi—Min(董丽敏),eta1.无机化学学报,2007,23:286-290.
  • 6Toyoda M, Inagaki M. Carbon, 2000,38:199-210.
  • 7Zhou Y Y, Wang S W, Kim K N, et al. Talanta, 2006,69: 970-975.
  • 8Bourlinos A B, Steriotis T A, Karakassides M, et al. Carbon, 2007,45:852-857.
  • 9Li J B, Xiao Q S, Li L C, et al. Appl. Su~. Sci., 2015,331: 108-144.
  • 10Kobayashi M, Shirai H, Nunokawa M. Ind. Eng. Chem. Res., 2002,41:2903-2909.

二级参考文献24

  • 1Kong Y, Yuan J, Wang Z L, et al. Appl. Clay Sci., 2009,46: 358-362.
  • 2Toyoda M, Inagaki M. Spill Sci. Technol. Bull., 2003,8:467-471.
  • 3MENG Guang-Yao(孟广耀), PENG Ding-Kun(彭定坤). Chin. J. Nature(Ziran Zazhi), 1996,18(3):151-155.
  • 4HAN Zhi-Dong(韩志东), ZHANG Da-Wei(张达威), DONG Li-Min(董丽敏), et al. Chinese J. Inorg. Chem.(Wuji Huaxue Xuebao), 2007,23(2):286-290.
  • 5WANG Lu-Ning(王鲁宁), CHEN Xi(陈希), ZHENG Yong-Ping(郑永平), et al. China Non-metallic Mining Industry Herald(Zhongguo Feijinshukuang Gongye Daokan), 2004,5: 559-562.
  • 6LIU Lan-Xiang(刘兰香), WANG Yu-An(黄玉安), WANG Lun-Sheng(黄润生), et al. Chinese J. Inorg. Chem.(Wuji Huaxue Xuebao), 2007,23(9):1667-1670.
  • 7Chen K Y, Chen X, Li L C, et al. J. Mater. Chem., 2012,22: 6449-6556.
  • 8Li L C, Chen X, Qian H S, et al. J. Mater. Res., 2011,26: 2683-2688.
  • 9CAO Nai-Zhen(曹乃珍), SHENG Wan-Ci(沈万慈), JIN Chan-Bo(金传波). China Environ. Sci.(Zhongguo Huanjing Kexue), 1997,17:188-192.
  • 10XU Zi-Gang(徐子刚), WU Qing-Zhou(吴清洲), WU Wen-Bin(伍文斌). Non-metallic Mines(Fei Jinshu Kuang), 2003, 23(4):33-36.

共引文献4

同被引文献36

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部