期刊文献+

求解分裂等式不动点问题的迭代算法

Iterative Algorithm for Solving The Split Equality Fixed Point Problem
下载PDF
导出
摘要 近年来,分裂可行性问题已受到人们的广泛关注,并应用于解决许多实际问题,如图像恢复和重构、CT断层扫描和放射疗法计划等。本文针对分裂等式不动点问题的一种迭代算法,改进了步长的选取方式,从而使算法更容易执行。在一定条件下,我们证明了新的迭代算法生成的序列弱收敛于分裂等式不动点问题的解。 In recent years, the split feasibility problem has been widely concerned in many areas and applied to solve many practical problems, such as image restoration and reconstruction,CT scans and radiotherapy plan, etc. In this paper,according to an iterative algorithm for the split equality fixed point problem, we improve the selection method of the step size, which makes the algorithm more easily implemented. Under certain conditions, it is proved that the sequence generated by the new iterative algorithm converges weakly to the solution of the split equality fixed point problem.
出处 《潍坊学院学报》 2016年第2期28-32,61,共6页 Journal of Weifang University
基金 山东省自然科学基金资助项目(ZR2013FL032) 山东省高校科研发展计划资助项目(J14LI52)
关键词 分裂等式不动点问题 迭代算法 拟伪压缩映射 分裂可行性问题 split equality fixed point problem, iterative algorithm, quasi-pseudo- contractive mappings, split feasibility problem
  • 相关文献

参考文献13

  • 1Bauschke H H,Borwein J M. On projection algorithms for solving convex feasibility problems[J]. SIAM Rew, 1996,38 (3):367-426.
  • 2Byrne C. Iterative oblique projection onto convex subsets and the split feasibility problem[J]. Inverse Probl,2002,18:441 -453.
  • 3Byrne C. A unified treatment of some iterative algorithms in signal processing and image reconstruction[J]. Inverse Probl, 2004,20:103-120.
  • 4Censor Y, Bortfeld T, Martin B, et al. A unified approach for inversion problems in intensity-modulated radiation therapy [J]. Phys Med Biol,2006,51(10) :2353-2365.
  • 5Yao Y, Chen R, Marino G, et al. Applications of fixed point and optimization methods to the multiple- sets split feasibility problem[J]. J Appl Math, 2012, (2) : 927530- 8.
  • 6Censor Y, Elfving T, Kopf N, et al. The multi-sets split feasibility problem and its applications for inverse problems[J]. Inverse Problems, 2005,21 : 2071-2084.
  • 7Xu H K. Iterative methods for the split feasibility problem in infinite-dimensional Hilbert spaces[J]. Inverse Probl, 2008,26(10) :5018-5034.
  • 8Censor Y, Elfving T. A multiprojection algorithm using Bregman projections in a product space[J]. Number Algorithms, 1994,8(2) :221-239.
  • 9Moudafi A. Alternating CQ-algorithm for convex feasibility and split fixed-point problems[J]. J Nonlinear Convex A- nal,2013,15(2):809-818.
  • 10Moudafi A,A1-Shemas E. Simultaneous iterative methods for split equality problem[J]. Trans Math Program Appl, 2013, (1) : 1-11.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部