期刊文献+

基于卷积神经网络的T波形态分类 被引量:15

T Wave Shape Classification Based on Convolutional Neural Network
下载PDF
导出
摘要 T波形态分类有助于诊断心肌缺血、急性心包炎和心脏猝死等疾病,是心电图远程监控中一个重要的研究课题.传统的T波分类算法依赖于T波检测,在准确定位T波的关键点之后再提取T波特征,完成分类.但是由于T波位置可能发生一定程度偏移,T波的形态多变且受到多种噪声的干扰,T波检测是一个难题.为了解决上述问题,本文提出基于卷积神经网络的T波分类算法:首先根据QRS波群位置及医学统计规律确定一个T波候选段,然后采用卷积神经网络直接完成T波分类.由于卷积神经网络有稀疏连接、权值共享的特性,能够通过训练自动获取T波特征,并且其特征对微小平移具备不变性且对噪声不敏感,从而能够有效解决T波形态分类问题.最后在MIT-BIH QT心电数据库上对本文方法进行测试,实验结果表明,本文方法可以在T波起始点未确定的情况下,能够识别单峰直立、单峰倒置、低平、负正双向、正负双向五类T波形态,正确率达到了99.1%. T wave shape classification which is helpful for the diagnosing of many cardiovascular diseases such as my- ocardial ischemia, acute pericarditis and sudden cardiac death, is an important research topic in electrocardiogram remote monitoring. The method of traditional T wave shape classification is based on the accurate detection of the T wave. It is implemented after the T wave delineation and feature extraction. However, T wave detection is difficult because of the position shift, morphologic variation and multi-noise. To resolve this problem, this paper proposes to classify T wave shape based on convolutional neural network. In the new method, firstly, a candidate data segment which contains the T wave is intercepted based on the location of the QRS wave and the medical statistical knowledge. Then the T wave is classified directly based on the convolutional neural network. Due to the advantages of sparse connection and weight share, the convolutional neural network can extract T wave feature by data training and it is robust to the poison shift and noise. So the convolutional neural network can resolve the T wave shape classification problem efficiently. The new method is tested on the MIT-BIH QT database; the experimental results show that the new method performs well in T wave shape classification without T wave delineation and the classification accuracy is 99.1%.
出处 《自动化学报》 EI CSCD 北大核心 2016年第9期1339-1346,共8页 Acta Automatica Sinica
基金 国家自然科学基金(61473112) 河北省杰出青年基金(F2016201186) 河北省自然科学基金(F2015201112) 河北省高等学校科学技术研究项目(ZD2015067)资助~~
关键词 心血管病 T波形态 卷积神经网络 分类 Cardiovascular disease, T wave morphology, convolutional neural network, classification
  • 相关文献

参考文献3

二级参考文献44

  • 1陈新,孙瑞,王思让,等.黄宛临床心电图学[M].6版,北京:人民卫生出版社,2009:6-20.
  • 2魏留臣.电张调整性T波改变的研究现状及其鉴别诊断[J].实用心电学杂志,2007,16(4):276-278. 被引量:5
  • 3Noble D,Cohen IS.The interpretation of the T wave of the electrocardiogram[J].Cardiovasc Res,1978,2:13-20.
  • 4Franz MR,Bargheer K,Rafflenbeul W,et al.Monophasic action potential mapping in human subjects with normal electrocardiograms:direct evidence for the genesis of the T wave[J].Circulation,1987,75(2):379-386.
  • 5Antzelevitch C,Sicouri S,Litovsky SH,et al.Heterogeneity within the ventricular wall.Electrophysiology and pharmacology of epicardial,endocardial,and M cells[J].Circ Res,1991,69(6):1427-1449.
  • 6Antzelevitch C,Fish J.Electrical heterogeneity within the ventricular wall[J].Basic Res Cardiol,2001,96(6):517-527.
  • 7Yan GX,Antzelevitch C.Cellular basis for the normal T wave and the electrocardiographic manifestations of the long-QT syndrome[J].Circulation,1998,98(18):1928-1936.
  • 8Yuan S,Kongstad O,Hertervig E,et al.Global repolarization sequence of the ventricular endocardium:monophasic action potential mapping in swine and humans[J].Pacing Clin Electrophysiol,2001,24(10):1479-1488.
  • 9Taggart P,Sutton P,Opthof T,et al.Electrotonic cancellation of transmural electrical gradients in the left ventricle in man[J].Prog Biophys Mol Biol,2003,82(1-3):243-254.
  • 10Conrath CE,Wilders R,Coronel R,et al.Intercellular coupling through gap junctions masks M cells in the human heart[J].Cardiovasc Res,2004,62(2):407-414.

共引文献21

同被引文献102

引证文献15

二级引证文献59

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部