期刊文献+

基于自适应快速决策树的不确定数据流概念漂移分类算法 被引量:5

Classifying algorithm for concept drifting of uncertain data streams based on adapting fast decision tree algorithm
原文传递
导出
摘要 由于不确定数据流中一般隐藏着概念漂移问题,对其进行有效分类存在着很多困难.为此,提出一种基于自适应快速决策树的算法.该算法基于一般决策树算法的原理,以自适应学习规则计算信息增益,以无标记情景学习拆分原理检测不确定数据流中的不确定数值属性,通过自适应快速决策树节点的拆分方法将不确定数值属性转化为不确定分类属性,以实现对不确定数据流的有效分类,进而有效检测到其中隐含的概念漂移现象.仿真结果验证了所提出方法的可靠性. Because of the concept drift problem hidden in the uncertain data stream, it is very difficult to classify them effectively. Based on the general decision tree algorithm, the adaptive fast decision tree algorithm can count information gain based on the adaptive learning rule, and detect uncertain numerical attributes though the principle of the non-marking learning scene. The numerical attribute is transformed into a non-determined classification attribute by using splitting method,so classification of uncertain data stream is realized effectively. Then the concept drift phenomenon is effectively detected in the uncertain data stream. Simulation results show the reliability of the proposed method.
出处 《控制与决策》 EI CSCD 北大核心 2016年第9期1609-1614,共6页 Control and Decision
基金 山东省自然科学基金项目(ZR2015GM013) 全国统计科研计划重点项目(2015LZ25) 中国博士后基金项目(2015M581757)
关键词 不确定数据流 自适应快速决策树 概念漂移 数值属性 分类属性 uncertain data streams adapting fast decision tree concept drifting numerical attribute classification attribute
  • 相关文献

参考文献14

  • 1Pan S, Wu K, Zhang Y, et al. Classifier ensemble foruncertain data stream classification[C]. Proc of the 14thPacific-Asia Conf on Knowledge Discovery and DataMining. Boston: Harvard Business School Press, 2010:488-495.
  • 2Gao C, Wang J. Direct mining of discriminative patternsfor classifying uncertain data[C]. Proc of the 16th ACMSIGKDD Int Conf on Knowledge Discovery and DataMinding. New York: Free Press, 2010: 861-870.
  • 3Qin B, Xia Y, Wang S, et al. A novel bayesian classificationfor uncertain data[J]. Knowledge-Based System, 2011,24(7): 1151-1158.
  • 4Aggarwal C, Yu P S. A framework for clustering uncertaindata streams[C]. Proc of the 24th IEEE Int Conf on DataEngineering. Canc ′un: Canc ′un Press, 2008: 150-159.
  • 5Pang S, Ban T, Kadobayashi Y, et al. Personalizedmode transductive spanning svm classification tree[J].Information Sciences, 2011, 181(4): 2071-2085.
  • 6Shaker A, Senge R, Hllermeier E. Evolving fuzzypattern trees for binary classification on data streams[J].Inforamtion Sciences, 2012, 19(2): 34-51.
  • 7肖丹萍,叶东毅.基于免疫原理的不确定数据流聚类算法[J].模式识别与人工智能,2012,25(5):826-834. 被引量:2
  • 8邢长征,温培.基于网格密度和引力的不确定数据流聚类算法[J].计算机应用研究,2015,32(1):98-101. 被引量:4
  • 9刘三民,孙知信.具有概念漂移的P2P网络流量识别研究[J].系统工程与电子技术,2013,35(4):864-869. 被引量:2
  • 10Salton G, Fox E A, Wu H. Extended Boolean informationretrieval[J]. Commun ACM, 1983, 26(11): 1022-1036.

二级参考文献54

  • 1金澈清,钱卫宁,周傲英.流数据分析与管理综述[J].软件学报,2004,15(8):1172-1181. 被引量:161
  • 2Domingos P, Hulten G. Mining high-speed data streams[C]. Proc of ACM Sigkdd Int Conf Knowledge Discovery in Databases. Boston: ACM Press, 2000: 71-80.
  • 3Hulten G, Spencer L, Domingos E Mining time-changing data streams[C]. Proc of ACM Sigkdd Int Conf Knowledge Discovery in Databases. San Francisco: ACM Press, 2001: 97-106.
  • 4Wang H, Fan W, Yu P, et al. Mining concept drifting data streams using ensemble classifiers[C]. The 9th ACM lnt Conf on Knowledge Discovery and Data Mining. Washington: ACM Press, 2003: 226-235.
  • 5Tom Mitchell. Machine learning[M]. McGraw Hill, 1997: 123_12~6.
  • 6Zico Kolter J, Marcus A Maloof. Dynamic weighted majority: An ensemble method for drifting concepts[J]. J of Machine Learning Research, 2007, 8(8): 2755-2790.
  • 7Li C Q, L!ng T W, Hu M. Efficient processing of updates in dynamic XML data[C]. Proc of the 22nd Int Conf on Data Engineering. Washington DC: IEEE Computer Society, 2006: 13-22.
  • 8Li C Q, Ling T W, Hu M. Efficient updates in dynamic XML data: From binary string to quaternary string[J]. The Very Large Data Bases J, 2008, 17(3): 573-601.
  • 9Saerens M, Latinne P, Decaestecker C. Adjusting the outputs of a classifier to new a priori probabilities: A simple procedure[J], Neural Computation, 2002, 14(1): 21- 41.
  • 10Yang C, Zhou J. Non-stationary data sequence classification using online class priors estimation[J]. Pattern Recognition, 2008, 41 (8): 2656-2664.

共引文献20

同被引文献35

引证文献5

二级引证文献61

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部