期刊文献+

量子行为引力搜索算法 被引量:9

Quantum-behaved gravitational search algorithm
原文传递
导出
摘要 为提高引力搜索算法的优化能力,通过在原始算法中融合量子计算,提出一种量子行为引力搜索算法.该算法采用类似量子行为粒子群优化的寻优机制,在每步迭代中,计算个体适应度,根据适应度计算个体质量,取前K个质量最大的个体作为候选集.采用轮盘赌方法在候选集中选择一个作为Delta势阱的中心,调整其他个体向该中心移动完成一步优化,在优化过程中使K值单调下降,以期达到探索和开发的平衡.标准函数极值优化的实验表明,所提出的算法比原算法在优化能力和优化效率两方面都有明显提高. To enhance the optimization performance of the gravitational search algorithm, by introducing quantum computing to the original algorithm, a quantum-behaved gravitational search algorithm is proposed. The optimization strategies of the proposed algorithm are similar to the quantum-behaved particle swarm. In each of iteration, the fitness of each individual is evaluated, and then the quality of each individual is calculated based on its fitness. The first K greatest individuals are taken as a candidate set, in which an individual is randomly selected with roulette and is taken as the center of the Delta potential well. By adjusting other individuals move to the potential well centre, a single-step optimization is completed. In the process of optimization, the value of K is made decreasing monotonically to achieve a balance of exploration and exploitation. The experimental results on benchmark functions extreme optimization show that the proposed algorithm is obviously superior to the original one in performance and efficiency.
出处 《控制与决策》 EI CSCD 北大核心 2016年第9期1678-1684,共7页 Control and Decision
基金 国家自然科学基金项目(61170132) 中国石油天然气集团公司重大专项项目(2013E-3809) 国家科技重大专项项目(2016ZX05019)
关键词 引力搜索 量子势阱 智能优化 算法设计 qravitational search potential well intelligent optimization algorithm design
  • 相关文献

参考文献10

  • 1Esmat R, Hossein N, Saeid S. GSA: A gravitational searchalgorithm[J]. Information Sciences, 2009, 179(6): 2232-2248.
  • 2Van B F, Engelbrecht A P. A study of particle swarmoptimization particle trajectories[J]. Information Sciences,2006, 176(8): 937-971.
  • 3Tang K S, Man K F, Kwong S, et al. Genetic algorithms andtheir applications[J]. Signal Processing Magazine, 1996,13(6): 22-37.
  • 4Roy P K. Solution of unit commitment problem usinggravitational search algorithm[J]. Int J of Electrical Power& Energy Systems, 2013, 53(1): 85-94.
  • 5Saucer T W, Sih V. Optimizing nanophotonic cavitydesigns with the gravitational search algorithm[J]. OpticsExpress, 2013, 21(18): 20831-20836.
  • 6李超顺,周建中,肖剑.基于改进引力搜索算法的励磁控制PID参数优化[J].华中科技大学学报(自然科学版),2012,40(10):119-122. 被引量:23
  • 7Sun J, Feng B, Xu W B. Particle swarm optimization withparticles having quantum behavior[C]. Proc of Congresson Evolutionary Computation. New York: IEEE, 2004, 8:325-331.
  • 8Xi M L, Sun J, Xu W B. An improved quantum-behavedparticle swarm optimization algorithm with weighted meanbest position[J]. Applied Mathematics and Computation,2008, 205(2): 751-759.
  • 9Liang J J, Qu B Y, Sugamthan P N, et al. Problemsdefinition and evaluation criteria for the CEC 2013special session on real-parameter optimization[EB/OL].Http://www.ntu.edu.sg/home/EPNSugan/index files/CEC2013/CEC2013.htm.
  • 10方伟,孙俊,谢振平,须文波.量子粒子群优化算法的收敛性分析及控制参数研究[J].物理学报,2010,59(6):3686-3694. 被引量:116

二级参考文献23

共引文献137

同被引文献106

引证文献9

二级引证文献39

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部