期刊文献+

利用二元函数性质来刻画集值映射的单调性

Some Characterizations of Monotonicity of Set-valued mappings By Using Properties of Bifunctions
下载PDF
导出
摘要 首先回顾了集值映射和二元函数的几种单调性,包括单调、严格单调、强单调、伪单调、拟单调以及弱单调,并定义了二元集值函数的这几种单调性,同时举出大量例子说明这些单调性之间的关系。最后,利用二元实值函数和二元集值函数的六种单调性分别刻画了集值映射的六种单调性。 In this paper, we first recall the monotonicity of set-valued mappings and bifunctions, such as monotonoicity, strict monotonicity, strong monotonicity, pseudomonotonicity, quasimonotonicity and weak monotonicity. We then define these monotonicity of set-valued bifunctions. Several examples are given to illustrate these monotonicity. We also give some new characterizations of six kinds of monotonicity of set-valued mappings by using bifunctions and set-valued bifunctions.
出处 《西华师范大学学报(自然科学版)》 2016年第3期289-296,共8页 Journal of China West Normal University(Natural Sciences)
基金 国家自然科学基金项目(11371015) 教育部科学技术重点项目(211163) 四川省青年科技基金(2012JQ0035)
关键词 集值映射 二元函数 单调性条件 set-valued mapping bifunction monotonicity
  • 相关文献

参考文献9

  • 1BIGI G, CASTELLANI M,PAPPALARDO M ,et al. Existence and solution methods for equilibria [J]. European J. Oper. R es.,2013,227(1) :1-11.
  • 2BLUM E , OETTLI W. From optimization and variational inequalities to equilibrium problems[J] . Math. S tud.,1994,63( 1 /2 /3 /4) :123-145.
  • 3FACCHINEI F,PANG J S. Finite-dimensional variational inequalities and complementarity problems [M]. New York: Springer-Verlag,2003.
  • 4BAIOCCHI C, CAPELO A. Variational and quasivariational inequalities applications to free boundary problems[M]. New York:John Wiley & Sons, 1984.
  • 5HARKER P T,PANG J S. Finite-dimensional variational inequalities and nonlinear complementarity problems: a survey of theory,algorithms and applications[J] . Math. Program. Series B, 1990,48(2) : 161-220.
  • 6KARAMARDIAN S,SCHAIBLE S. Seven kinds of monotone maps[J]. J. Optim. Theory Appl. ,1990,66(1) :37-46.
  • 7CROUZEIX J P ,MARC0TTE P,ZHU D L. Conditions ensuring the applicability of cutting-plane methods for soving variationalinequalities [J] . Math. Program. Series A, 2000,88 (3) : 521-539.
  • 8BIGI G, PASSACANTANDO M. Twelve monotonicity conditions arising from algorithms for equilibrium problems [J]. Optim.Methods Softw. ,2015,30(2) :323-337.
  • 9FUKUSHIMA M .非线性最优化基础[M] . 北京:科学出版社,2011.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部