期刊文献+

一种改进的混合高斯学习自适应背景建模算法 被引量:4

An Improved Adaptive Background Modeling Algorithm Based on Gaussian Mixture Learning
下载PDF
导出
摘要 针对混合高斯学习模型计算复杂度高,实时响应系统应用困难等问题,提出了一种改进的背景建模算法,首先利用帧差法进行预处理,选择出帧间变化区域,然后对变化区应用混合高斯学习模型进行采样计算,完成视频背景建模。由于混合高斯学习模型融合了增量最大期望分类学习方法,自动选择学习率参数具有更好的收敛速度和背景估计精度;同时通过帧差法预处理降低了算法的计算量。实验表明,该算法在保证收敛稳定性和背景建模精度的情况下,提高了背景分割的响应速度。 For the high computational complexity of Gaussian Mixture Learning,hard application problems of real - time response system and other issues, this paper presents an improved scheme for modeling video background. In the completion of the video background modeling process, firstly the interchanging area is selected according to the frame difference method, and then the sampling calculation based on Gaussian Mixture Learning is applied to this selected area. Since the Gaussian mixture model combining improved Expectation Maximization classification learning methods,automatically parameter learning rate has a better convergence speed and estimation accuracy,and also the algorithm computation is reduced. The experimental result shows that the algorithm raises the response speed for background segmentation, without reducing the convergence stability and modeling accuracy.
出处 《西华师范大学学报(自然科学版)》 2016年第3期349-353,共5页 Journal of China West Normal University(Natural Sciences)
基金 四川省教育厅一般项目(14ZB0141)
关键词 背景建模 混合高斯学习 视频检测 帧差法 background modeling Gaussian mixture learning video detection frame difference
  • 相关文献

参考文献13

  • 1代科学,李国辉,涂丹,袁见.监控视频运动目标检测减背景技术的研究现状和展望[J].中国图象图形学报,2006,11(7):919-927. 被引量:169
  • 2周密,宋占杰.基于稀疏与低秩矩阵分解的视频背景建模[J].计算机应用研究,2015,32(10):3175-3178. 被引量:8
  • 3刘鑫,刘辉,强振平,耿续涛.混合高斯模型和帧间差分相融合的自适应背景模型[J].中国图象图形学报,2008,13(4):729-734. 被引量:111
  • 4HARITAOGLU I , DAVIS LARRY S, HARWOOD D. W4 : A real time system for detecting and tracking people [C] //IEE E ComputerSociety Conference on Computer Vision and Pattern Recognition, April 14-16,1998 , Nara, Japan : IEEE CS Press, 1998 :877-892.
  • 5STAUFFER C,GRIMS0N W E L. Adaptive background mixture models for real-time trackingf C]//Proc. Conf. Computer Visionand Pattern Recognition, June 23-25,1999 ,Fort Collins, Colorado : IEEE CS Press, 1999,2 :246-252.
  • 6FRIEDMAN N,RUSSELL S. Image segmentation in video sequences: a probabilistic approach[C]//Proc. 13th Conf. Uncertaintyin Artificial Intelligence, August 1 -3,1997 ,Providence,RI. New York : ACM , 1997 : 175-181.
  • 7SATO M A,ISHII S. Online EM algorithm for the normalized gaussian network[J]. Neural Computation, 1999,12 :407-432.
  • 8LEE DAR-SHYANG. Effective gaussian mixture learning for video background subtraction [J]. IEEE Transactions on Pattern Analysisand Machine Intelligence ,2005 ,27 (5) :827-832.
  • 9夏海英,何利平,黄思奇.基于时空分布的混合高斯背景建模改进方法[J].计算机应用研究,2015,32(5):1546-1548. 被引量:11
  • 10ZORAN ZIVKOVIC. Improved Adaptive Gaussian Mixture Model for Background Subtraction[C] / / Proceedings of the 17th InternationalConference on Pattern Recognition, August 23 - 26 ,2004 , Cambridge, UK : IEEE CS Press ,2004 ,2 :28-31.

二级参考文献97

  • 1朱明旱,罗大庸,曹倩霞.帧间差分与背景差分相融合的运动目标检测算法[J].计算机测量与控制,2005,13(3):215-217. 被引量:77
  • 2Friedman N, Russell S. Image segmentation in video sequences: a probabilistic approach. In: Proceedings of the 13th Conference on Uncertainty in Artificial Intelligence. Providence, USA: Morgan Kaufmann, 1997. 175-181
  • 3Stauffer C, Grimson W E L. Learning patterns of activity using real-time tracking. IEEE Transactions on Pattern AnaJysis and Machine Intelligence, 2000, 22(8): 747-757
  • 4Kaewtrakulpong P, Bowden R. An improved adaptive back- ground mixture model for real-time tracking with shadow detection. In: Proceedings of the 2nd European Workshop on Advanced Video Based Surveillance Systems. Providence, USA: Kluwer Academic Publishers, 2001. 1-5
  • 5Zivkovic Z, van der Heijden F. Efficient adaptive density estimation per image pixel for the task of background subtraction. Pattern Recognition Letters, 2006, 27(7): 773-780
  • 6Lee D S. Effective Gaussian mixture learning for video background subtraction. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27(5): 827-832
  • 7Power P W, Schoonees J A. Understanding background mixture models for foreground segmentation. In: Proceedings of Image and Vision Computing New Zealand. Auckland, New Zealand: Auckland University Press, 2002. 267-271
  • 8Elgammal A, Duraiswami R, Haxwood D, Davis L S. Background and foreground modeling using nonparametric kernel density estimation for visual surveillance. Proceedings of IEEE, 2002, 90(7): 1151-1163
  • 9Stenger B, Ramesh V, Paragios N, Coetzee F, Buhmann J M. Topology free hidden Markov models: application to background modeling. In: Proceedings of the 8th International Conference on Computer Vision. Vancouver, Canada: IEEE, 2001. 294-301
  • 10Toyama K, Krumm J, Brumitt B, Meyers B. Wallflower: principles and practice of background maintenance. In: Proceedings of the 7th International Conference on Computer Vision. Kerkyra, Greece: IEEE, 1999. 255-261

共引文献355

同被引文献58

引证文献4

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部