期刊文献+

基于严格残差选择的非视距定位算法 被引量:5

NLOS Localization Algorithm Based on the Strict Residual
下载PDF
导出
摘要 无线传感器网络的移动定位近年来受到越来越多的关注.影响精确定位的一个很重要因素是非视距传播信号的存在,非视距误差使得定位精度严重下降.通过分析非视距测量值残差的特性,提出了一种严格残差选择方法来鉴别距离测量值的状态.首先利用扩展卡尔曼滤波(EKF)算法的线性回归模型获得距离测量值的残差,然后利用严格残差选择来对残差进行筛选,最后利用并行变节点EKF算法完成定位.仿真结果表明提出的算法在非视距情况下的定位效果要优于其他算法,在不同环境下该算法具有更好的鲁棒性和更高的定位精度. Mobile localization in wireless sensor networks ( WSNs) has attracted considerable attention in recent years. One of the most important factors affecting the accuracy of localization or tracking is non- line- of-sight ( NLOS ) signal propagation. The NLOS error could seriously reduce the localization accuracy. By analyzing the characteristics of the residual of NLOS distance measurements, a strict residual selection method was proposed to identify the condition of the distance measurements. In this algorithm,extend Kalman filter (EKF) linear regression model was firstly utilized to get distance residuals. Then the strict residual selection was used to filtrate the residuals. Finally the localization was finished by using the parallel variable node EKF algorithm. Simulation results show that the localization of the proposed algorithm outperforms the other algorithms compared in NLOS conditions. The proposed algorithm has better robustness and higher accuracy in different environments.
出处 《东北大学学报(自然科学版)》 EI CAS CSCD 北大核心 2016年第9期1221-1224,共4页 Journal of Northeastern University(Natural Science)
基金 国家自然科学基金资助项目(61503274 61403068) 中央高校基本科研业务费专项资金资助项目(N140403005)
关键词 无线传感器网络 非视距定位 扩展卡尔曼滤波 严格残差 线性回归模型 wireless sensor network non- line- of-sight ( NLOS) localization extend Kalman filter strict residual linear regression model
  • 相关文献

参考文献9

  • 1Guvenc I , Chong C. A survey on TOA based wirelesslocalization and NLOS mitigation techniques [J]. IEEECommunications Surveys & Tutorials, 2009, 11 ( 3 ) :107 -124.
  • 2Yu K , Guo Y. Statistical NLOS identification based on AOA,TOA,and signal strength[J]. IEEE Transactions on VehicularTechnology,2009,5(( 1 ) : 274 -286.
  • 3Wang Z. Omnidirectional mobile NLOS identification andlocalization via multiple cooperative nodes [J]. IEEETransactions on Mobile Computing,2012,1((12):2047 - 2059.
  • 4Hammes U , Wolsztynski E , Zoubir A M. Robust tracking andgeolocation for wireless networks in NLOS environments[J].IEEE Journal o f Selected Topics in Signal Processing ,2009, 3( 5 ) 889 -901.
  • 5Durovic Z , Kovacevic B. Robust estimation with unknownnoise statistics[J]. IEEE Transactions on Automatic Control,1 9 9 9 ,4 4 (6 ): 1292-1296.
  • 6Wang G , Chen H , Li Y. NLOS error mitigation for TOAbasedlocalization via convex relaxation [J] . IEEETransactions on Wireless Communications, 2014, 13 ( 8 ) :4119 -4131.
  • 7Li W , Jia Y, Du J. Distributed multiple-model estimation forsimultaneous localization and tracking with NLOS mitigation[J]. IEEE Transactions on Vehicular Technology, 20 1 4 ,, 2( 6 ) 2824 -2830.
  • 8吴成东,程龙,张云洲,贾子熙,王伯平.基于循环滤波的无线传感器网络室内定位[J].控制与决策,2011,26(10):1515-1519. 被引量:8
  • 9程咏梅,潘泉,张洪才,叶西宁.基于推广卡尔曼滤波的多站被动式融合跟踪[J].系统仿真学报,2003,15(4):548-550. 被引量:19

二级参考文献13

  • 1潘泉,戴冠中,张洪才.被动式跟踪可观测性分析的非线性系统方法[J].信息与控制,1997,26(3):168-173. 被引量:17
  • 2孙佩刚,赵海,罗玎玎,张晓丹,尹震宇.智能空间中RSSI定位问题研究[J].电子学报,2007,35(7):1240-1245. 被引量:75
  • 3Awad A, Frunzke T, Dressler E Adaptive distance estimation and localization in WSN using RSSI measures[C]. The 10th Euromicro Conf on Digital System Design Architectures. Lubeck: IEEE Press, 2007:471-478.
  • 4Youngbae Kong, Younggoo Kwon, Gwitae Park. Robust localization over obstructed interferences for inbuilding wireless applications[J]. IEEE Trans on Consumer Electronics, 2009, 55(1): 105-111.
  • 5Ahn H S, Yu W. Environmental-adaptive RSSI-based indoor localization[J]. IEEE Trans on Automation Science and Engineering, 2009, 6(4): 626-633.
  • 6Paul A S, Wan E A. RSSI-Based indoor localization and tracking using sigma-point Kalman smoothers[J]. IEEE J of Selected Topics in Signal Processing, 2009, 3(5): 860- 873.
  • 7Ren H, Meng Q H. Power adaptive localization algorithm for wireless sensor networks using particle filter[J]. IEEE Trans on Vehicular Technology, 2009, 58(5): 2498-2508.
  • 8Bosisio A V. RSSI based localization and tracking algorithm for indoor environments[C]. Int Conf on Electromagnetics in Advanced Application. Torino: IEEE Press, 2009: 469-472.
  • 9Saxena M, Gupta P, Jain B N. Experimental analysis of RSSI-based location estimation in wireless sensor networks[C]. Int Conf on Communication Systems Software and Middleware and Workshops. Bangalore: IEEE Press, 2008: 503-510.
  • 10Catovic A, Sahinoglu Z. The Cramer-Rao bounds of hybrid TOA/RSS and TDOA/RSS location estimation schemes[J]. IEEE Communications Letters, 2004, 8(10): 626-628.

共引文献25

同被引文献12

引证文献5

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部