期刊文献+

反向扩孔气动冲击器内活塞结构的仿真研究与优化设计 被引量:3

Optimization Design and Computer Simulation of the Reverse Counterboring Pneumatic Impactor's Inner Piston Structure
下载PDF
导出
摘要 分析了反向扩孔气动冲击器工作原理,运用牛顿运动定律、热力学能量守恒定律、定常流动能量方程、波动理论等建立活塞运动的数学模型——冲击器性能(钻头获得的冲击能和破岩的有效功率)与内活塞结构参数的函数关系.利用Matlab数学软件对反向扩孔气动冲击器活塞运动的数学模型进行数值求解.对影响反向扩孔气动冲击器性能的各内活塞结构参数进行了详细的仿真分析,得到了各结构参数与气动冲击器性能之间的关系.钻头所获的冲击能和破岩有效功率会随着内活塞外径、内活塞长度、内活塞前端到钻头的距离的增大而减小. The working principles of the reverse counterboring pneumatic impactor were analyzed. The mathematical model of piston movement was built based on Newton' laws of motion,energy conservation law of thermodynamics,steady flow energy equation and w a v e theory to explore the relationship between the performance parameters ( i . e.,impact energy and rock breaking effective power) and inner piston structure parameters of the impactor. The mathematical software Matlab was used to solve the mathematical model of the reverse counterboring pneumatic impactor' s piston movement. The inner piston structure parameters which affect the impact performance were analyzed in detail to obtainthe relationship between the impact performance and the inner piston structure parameters. It was found that the drill's impact energy and rock breaking effective power will reduce with the increase of the inner piston's outside diameter,the inner piston' length and the distance from the inner piston' front face to the drill .
出处 《东北大学学报(自然科学版)》 EI CAS CSCD 北大核心 2016年第9期1293-1298,共6页 Journal of Northeastern University(Natural Science)
基金 国家自然科学基金资助项目(51375499)
关键词 反向扩孔气动冲击器 内活塞 数学模型 结构参数 性能 reverse counterboring pneumatic impactor inner piston mathematical model structure parameter performance
  • 相关文献

参考文献10

  • 1Muindi T M, Dobbels D J. Ingredients for successfullyinstalling pipe using trenchless m ethods[C]//N ew PipelineTechnologies, [S. l] : Civil Engineering ,2003:1165 -1172.
  • 2Zwierzchowska A. The optimum choice of trenchless pipelaying technologies [J]. Tunnelling and Underground SpaceTechnology, 2 0 0 6 ,6 (6 ) : 696 - 699.
  • 3Stidger R W. Technology: trenchless technology providesenvironmental advantages[J] . Gas Utility Manager, 2002,47( 1 ) : 1 8 -1 9 .
  • 4Ali S , Zayed T , Hegab M. Modeling the effect of subjectivefactors on productivity of trenchless technology application toburied infrastructure systems [J]. Journal o f ConstructionEngineering and Management, 2007,133 ( 10 ) : 743 - 748.
  • 5Stein D. Evolution in trenchless technology for rehabilitationand microtunnelling installation of drains and se w e rs[C]//Pipeline Engineering and Construction InternationalConference. Baltimore, 2003 :7 -2 2 .
  • 6Ariaratnam S T , Chan W , Choi D. Utilization of trenchlessconstruction methods in China's Mainland to sustain urbaninfrastructure[J]. Practice Periodical on Structural Designand Construction, 2006,1 (13 ) : 134 -141.
  • 7Ryan P K , Finney A J. Pipe materials and joint selection fortrenchless construction[J]. Bridges, 2 0 1 4 ,0 : 928 - 939.
  • 8马利东,隆威,苏冬九.CJ-130型双向气动潜孔锤的研制[J].探矿工程(岩土钻掘工程),2009,36(1):31-33. 被引量:7
  • 9Tu S T , Chen X , Jin H Z , et al. Numerical simulation on fluidphenomena of gas-liquid-solid flow in high temperature andpressure separator [J]. Procedia Engineering, 2015, 130 :1486 -1493.
  • 10Ansari A A, Deshpande D M. Mathematical model ofasynchronous machine in MATLAB simulink [J].International Journal o f Engineering Science &Technology,2 0 1 0 ,3 (4 ): 273 -288.

二级参考文献1

共引文献6

同被引文献17

引证文献3

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部