期刊文献+

Dual Orlicz Affine Surface Area

Dual Orlicz Affine Surface Area
原文传递
导出
摘要 According to the notion of Orlicz mixed volume, in this paper, we extend L_p-dual affine surface area to the Orlicz version. Further, we obtain the affine isoperimetric inequality and the Blachke-Santaló inequality for the dual Orlicz affine surface area. Besides, we also get the monotonicity inequality for Orlicz dual affine surface area. According to the notion of Orlicz mixed volume, in this paper, we extend L;-dual affine surface area to the Orlicz version. Further, we obtain the affine isoperimetric inequality and the Blachke-Santaló inequality for the dual Orlicz affine surface area. Besides, we also get the monotonicity inequality for Orlicz dual affine surface area.
作者 GAO Li MA Tongyi GUO Yuanyuan GAO Li;MA Tongyi;GUO Yuanyuan(College of Mathematics and Statistics, Northwest Normal University;College of Mathematics and Statistics, Hexi University)
出处 《Wuhan University Journal of Natural Sciences》 CAS CSCD 2016年第5期433-437,共5页 武汉大学学报(自然科学英文版)
基金 Supported by the National Natural Science Foundation of China(11161019,11561020) the Science and Technology Plan of Gansu Province(145RJZG227)
关键词 L_p-dual affine surface area dual Orlicz mixed volume dual Orlicz affine surface area L_p-dual affine surface area dual Orlicz mixed volume dual Orlicz affine surface area
  • 相关文献

参考文献1

二级参考文献15

  • 1Lutwak, E., Dual mixed volumes, Pacific J. Math., 58(2), 1975, 531-538.
  • 2Lutwak, E., Intersection bodies and dual mixed volumes, Adv. Math., 71, 1988, 232-261.
  • 3Lutwak, E., Centroid bodies and dual mixed volumes, Proc. London Math. Soc., 60(3), 1990, 365-391.
  • 4Zhag, G., Centered bodies and dual mixed volumes, Trans. Amer. Math. Soc., 345(2), 1994, 777-801.
  • 5Gardner, R. J., Stability of inequality in the dual Brunn-Minkowski theory, J. Math. Anal. Appl., 231 1999, 568-587.
  • 6Klain, D., Star valuation and dual mixed volumes, Adv. Math., 121, 1996, 8(101.
  • 7Gardner, R. J., Hug, D. and Weil, W., The Orlicz-Brunn-Minkowski theory: A general framework, addi- tions, and inequalities, J. Differental Geom., 97(3), 2014, 427-476.
  • 8Haberl, C., Lutwak, E., Yang, D. and Zhang, G., The even Orlicz Minkowski problem, Adv. Math., 224, 2010. 2485-2510.
  • 9Huang, Q. and He, B., On the Orlicz Minkowski problem for polytopes, Discrete Comput. Geom., 48 2012, 281-297.
  • 10Lutwak, E., Yang, D. and Zhang, G., Orlicz projection bodies, Adv. Math., 223, 2010, 220-242.

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部