期刊文献+

Wastewater-nitrogen removal using polylactic acid/starch as carbon source: Optimization of operating parameters using response surface methodology

Wastewater-nitrogen removal using polylactic acid/starch as carbon source: Optimization of operating parameters using response surface methodology
原文传递
导出
摘要 Nitrogen removal from ammonium-containing wastewater was conducted using polylactic acid (PLA)/ starch blends as carbon source and carrier for fimctional bacteria. The exclusive and interactive influences of operating parameters (i.e., temperature, pH, stirring rate, and PLA-to-starch ratio (PLA proportion)) on nitrification (Y1), denitrification (Y2), and COD release rates (Y3) were investigated through response surface methodology. Experimental results indicated that nitrogen removal could be successfully achieved in the PLA/starch blends through simultaneous mtnncatlon anti clenltnncatlon. The carbon release rate of the blends was controllable. The sensitivity of Y1, Y2, and Y3 to different operating parameters also differed. The sequence for each response was as follows: for Y1, pH 〉 stirring rate 〉 PLA proportion 〉 temperature; for Y2, PH 〉 PLA proportion 〉.temperature.〉 stirring rate; and for Y3, stirring rate 〉pH 〉 PLA proportion 〉 temperature. In this study, the following optimum conditions were observed: temperature, 32.0℃; pH 7.7; stirring rate, 200.0 r · min^-1 and PLA proportion 0.4. Under these conditions Y1 Y2 and Y3 were 134.0 μg-N·g-blend^-1·h^-1, 160.9μg-N-g-blend^-1·h^-1, and 7.6 × 10^3 μg-O·g-blend^-1·h^-1, respectively. These results suggested that the PLA/starch blends may be an ideal packing material for nitrogen removal. Nitrogen removal from ammonium-containing wastewater was conducted using polylactic acid (PLA)/ starch blends as carbon source and carrier for fimctional bacteria. The exclusive and interactive influences of operating parameters (i.e., temperature, pH, stirring rate, and PLA-to-starch ratio (PLA proportion)) on nitrification (Y1), denitrification (Y2), and COD release rates (Y3) were investigated through response surface methodology. Experimental results indicated that nitrogen removal could be successfully achieved in the PLA/starch blends through simultaneous mtnncatlon anti clenltnncatlon. The carbon release rate of the blends was controllable. The sensitivity of Y1, Y2, and Y3 to different operating parameters also differed. The sequence for each response was as follows: for Y1, pH 〉 stirring rate 〉 PLA proportion 〉 temperature; for Y2, PH 〉 PLA proportion 〉.temperature.〉 stirring rate; and for Y3, stirring rate 〉pH 〉 PLA proportion 〉 temperature. In this study, the following optimum conditions were observed: temperature, 32.0℃; pH 7.7; stirring rate, 200.0 r · min^-1 and PLA proportion 0.4. Under these conditions Y1 Y2 and Y3 were 134.0 μg-N·g-blend^-1·h^-1, 160.9μg-N-g-blend^-1·h^-1, and 7.6 × 10^3 μg-O·g-blend^-1·h^-1, respectively. These results suggested that the PLA/starch blends may be an ideal packing material for nitrogen removal.
出处 《Frontiers of Environmental Science & Engineering》 SCIE EI CAS CSCD 2016年第4期137-146,共10页 环境科学与工程前沿(英文)
基金 This study was supported by the National Natural Science Foundation of China (Grant No. 41505124) and Fundamental Research Funds for the Central Universities (Grant No. FRF-TP- 15 -044A 1).
关键词 Nitrogen removal Polylactic acid Starch Carbon source Response surface methodology Nitrogen removal Polylactic acid Starch Carbon source Response surface methodology
  • 相关文献

参考文献4

二级参考文献25

共引文献80

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部