期刊文献+

模板自适应的积分通道特征行人检测算法 被引量:1

Template Adaptively Integral Channel Feature Algorithm for Pedestrian Detection
下载PDF
导出
摘要 本文对视频中的行人检测问题进行了研究。针对传统的积分通道特征算法在误测背景目标和丢失目标两方面存在缺陷,本文以积分通道特征的行人检测算法为核心,对原检测算法进行了优化并提出模板自适应的积分通道特征算法。通过使用预处理优化和自适应模板,该优化算法能够有效地检测到丢失的目标并且抑制了背景干扰,提高了检测的准确性。最后的实验数据表明该优化算法整体性能有所提高,尤其在提高检测丢失目标的准确率和降低误测背景目标的检测率上都相较于传统的积分通道特征算法有较大的提高。 This paper focuses on the pedestrian detection in video. With regard to the shortcomings of the traditional inte- gral channel feature algorithm, such as, the error detection of background targets and lost targets, the original detection al- gorithm is optimized and the template adaptive integral channel feature algorithm is proposed in this paper based on the pe- destrian detection algorithm of integral channel feature. This optimized algorithm can effectively detect the lost target and suppress the background interference to improve detection accuracy by applying the preprocessing optimization and adaptive template. The experiment results suggests that the overall performance of the optimized algorithm can be improved, espe- cially in improving the accuracy of detecting lost targets and reduce the error detection of background targets comparing with traditional integral channel feature algorithm.
出处 《信号处理》 CSCD 北大核心 2016年第9期1009-1014,共6页 Journal of Signal Processing
基金 国家自然科学基金(61401286) 广东省科技计划产学研合作项目(2016B090918084) 装备预先研究项目(51326020602)
关键词 积分通道特征 模板自适应 行人检测 计算机视觉 检测优化 integral channel feature template adaptively pedestrian detection computer vision detection optimized
  • 相关文献

参考文献10

  • 1苏松志,李绍滋,陈淑媛,蔡国榕,吴云东.行人检测技术综述[J].电子学报,2012,40(4):814-820. 被引量:159
  • 2柏柯嘉,刘伟铭,汤义.基于Gabor小波和颜色模型的阴影检测算法[J].华南理工大学学报(自然科学版),2009,37(1):64-68. 被引量:11
  • 3Dalai N, Triggs B. Histograms of oriented gradients for human detection[J]. IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2005, 1: 886-893.
  • 4Lai M. Context-Aware Image Processing[ D]. Heriot-Watt University, 2014: 25-31.
  • 5Blair C G, Robertson N M. Event-Driven Dynamic Platform Selection for Power-Aware Real-Time Anomaly Detection in Video[ D]. Heriot-Watt Universit, 2014: 11-20.
  • 6Dollar P, Tu Z, Perona P, et al. Integral Channel Fea- tures[ C]//BMVC, 2009 : 44-48.
  • 7Doll.r P, Belongie S, Perona P. The Fastest Pedestrian Detector in the West[ C]//BMVC,2010: 55-61.
  • 8Kaewtrakulpong P, Bowden R. An Improved Adaptive Back- ground Mixture Model for Real-time Tracking with Shadow Detection[ M]. Springer US, 2002.
  • 9Robertson N M, Letham J. Contextual person detection in multi-modal outdoor surveillance[ C]// Signal Processing Conference EUSIPCO, 2012 Proceedings of the 20th Eu- ropean IEEE, 2012: 1930-1934.
  • 10邵奇可,李路,周宇,颜世航.一种基于滑动窗口优化算法的行人检测算法[J].浙江工业大学学报,2015,43(2):212-216. 被引量:10

二级参考文献82

  • 1万峰,杜明辉.人脸识别中一种新的Gabor特征提取方法[J].华南理工大学学报(自然科学版),2004,32(8):5-8. 被引量:10
  • 2刘利频 ,徐建闽 ,温惠英 ,Wang Guanqiu .基于纹理不变性的车辆阴影处理方法(英文)[J].武汉理工大学学报(交通科学与工程版),2005,29(6):1005-1008. 被引量:2
  • 3贾慧星,章毓晋.车辆辅助驾驶系统中基于计算机视觉的行人检测研究综述[J].自动化学报,2007,33(1):84-90. 被引量:69
  • 4杜友田,陈峰,徐文立,李永彬.基于视觉的人的运动识别综述[J].电子学报,2007,35(1):84-90. 被引量:79
  • 5Zhao T, Nevatia R. Tracking multiple humans in complex situations [ J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence ,2004,26(9) :1208-1221.
  • 6Song K,Tai J. Image-based traffic monitoring with shadow suppression [ J ]. Proceedings of the IEEE, 2007,95 ( 2 ) : 413-426.
  • 7Leone A, Distante C, Ancona N ,et al. Texture analysis for shadow removing in video-surveillance systems [C] // Proceedings of IEEE International Conference on Systems, Man and Cybernetics. Hegue : IEEE, 2004 : 6 325- 6330.
  • 8Bevilacqua A. Effective shadow detection in traffic monitoring applications [ J ]. J Winter School of Computer Graphis,2003,11 ( 1 ) :57-64.
  • 9Cucchiara R, Grana C, Piccardi M, et al. Detecting moving objects, ghosts, and shadows in video streams [ J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence ,2003,25 ( 10 ) : 1337-1 342.
  • 10Salvador E, Cavallaro A, Ebrahimi T. Cast shadow segmentation using invariant color features [ J ]. Computer Vision and Image Understanding ,2004,95 ( 2 ) :238-259.

共引文献177

同被引文献6

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部