期刊文献+

基于Adaboost多特征融合的织物扫描图案识别 被引量:3

Fabric Scanning Pattern Recognition Based on Adaboost Multi-Feature Fusion
下载PDF
导出
摘要 针对织物扫描图像中纱线纹理等的存在造成难以提取有效图案特征的问题,提出了一种基于多特征融合的图案识别方法。首先通过纹理抑制平滑滤波算法滤除织物扫描图像的纱线纹理,并进行灰度化;然后分别提取灰度图像的边缘方向直方图、最大稳定极值区域的SURF特征和灰度共生矩阵特征,建立样本图像特征库;最后以样本图像特征库特征为训练对象,通过Adaboost算法融合3类特征建立分类器,实现图案识别。实验结果表明,基于Adaboost的多特征融合织物扫描图案识别算法比单特征识别算法有较高的准确率。 It is difficult to extract effective pattern features due to the existence of yarn texture in fabric scanning images.For this problem,this paper proposes a pattern recognition method based on multi-feature fusion.Firstly,texture suppression smoothing filtering algorithm was applied to filter yarn texture of fabric scanning images and graying was conducted.Then,edge direction histogram of gray-level images,SURF features of maximally stable extremum regions and features of gray-level co-occurrence matrixes were extracted respectively,and feature database of sample images was established.Finally,by taking feature database of sample images as the training object,three types of pattern features were fused through Adaboost algorithm to establish the classifier and achieve pattern recognition.The experimental results show that the Adaboost-based multi-feature fusion fabric scanning pattern recognition algorithm achieves higher accuracy than singlefeature recognition method.
出处 《现代纺织技术》 北大核心 2016年第5期25-29,共5页 Advanced Textile Technology
基金 国家自然科学基金项目(51405448) 浙江省自然科学基金项目(LY13H180011) 浙江省信息服务业发展专项计划重点项目(浙经信软件[2015]98号)
关键词 织物扫描图像 图案识别 纹理抑制平滑 边缘方向直方图 最大稳定极值区域 灰度共生矩阵 特征融合 ADABOOST fabric scanning pattern recognition texture suppression smoothing edge direction histogram maximally stable extremum region gray-level co-occurrence matrix feature fusion Adaboost
  • 相关文献

参考文献14

  • 1ZHANG J, XIN B, WU X. A review of fabricidentification based on image analysis technology [J].Textiles and Light Industrial Science and Technology,2013,2(3):120-130.
  • 2张勇,邓中民,马俊.贾卡经编织物花纹图案的自动识别[J].武汉纺织大学学报,2015,28(3):45-48. 被引量:2
  • 3machine embroidery image color analysis system, partII: Application of the genetic algorithm in search of arepetitive pattern image [J]. Textile Research Journal,2012,8201):1099-1106.
  • 4常利利,马俊,邓中民,蒋蕾.基于灰度共生矩阵的织物组织结构差异分析[J].纺织学报,2008,29(10):43-46. 被引量:8
  • 5康锋,胡洁,张华熊,周慧.基于最大稳定极值区域的织物图案检索[J].纺织学报,2015,36(10):156-160. 被引量:5
  • 6BUNTE K,BIEHL M, JONKMAN M F, et al.Learning effective color features for content based imageretrieval in dermatology [J]. Pattern Recognition, 2011,44(9):1892-1902.
  • 7KEKRE H B,THEPADE S D, SARODE T K, et al.Image Retrieval using Texture Features extracted fromGLCM,LBG and KPE [ J ]. International Journal ofComputer Theory and Engineering, 2010,2(5) : 1793-8201.
  • 8KEKRE H B, THEPADE S,MUKHERJEE P, et alImage Retrieval with Shape Features Extracted usingGradient Operators and Slope Magnitude Technique withBTC[J]. International Journal of Computer Applications,2010,6(8):28-33.
  • 9BELLAVIA F,TEGOLO D,VALENTI C. Keypointdescriptor matching with context-based orientation esti-mation J]. Image and Vision Computing, 2014,32(9):559-567.
  • 10KANG F, ZHANG H X, HU J, et al. A NovelSmoothing Filter with Texture Suppression for FabricImages [C]//Computational Intelligence and Design(ISCID),2014 Seventh International Symposium oaHangzhou:IEEE, 2014,2:577 - 580.

二级参考文献47

  • 1王克奇,陈立君,王辉,谢永华.基于空间灰度共生矩阵的木材纹理特征提取[J].森林工程,2006,22(1):24-26. 被引量:18
  • 2王惠明,史萍.图像纹理特征的提取方法[J].中国传媒大学学报(自然科学版),2006,13(1):49-52. 被引量:77
  • 3邹超,朱德森,肖力.基于类别共生矩阵的纹理疵点检测方法[J].华中科技大学学报(自然科学版),2006,34(6):25-28. 被引量:20
  • 4曹琼,郑红,李行善.一种基于纹理特征的卫星遥感图像云探测方法[J].航空学报,2007,28(3):661-666. 被引量:32
  • 5Kang T, Kim C. Automatic recognition of fabric weave patterns by digital image analysis [ J ]. Textile Research Journal, 1999, 69(2) : 77 - 83.
  • 6Lin J J. Applying a co-occurrence matrix to automatic inspection of weave density for woven fabrics [ J 3. Textile Research Journal,2002, 72 (6) : 486 - 490.
  • 7LI J, VADLAMUDI A, CHUANG S H, et al. Combining prostate cancer region prediction from MALDI spectra. processing and texture analysis [ C ]. International Confer- ence on Bioinformatics and Bioengineering,2010:73-78.
  • 8TIEN C L, LYN Y R. Optical surface flatness recognized bydiscrete wavelet transform and grey level co-occur- rence, matrix [ J ]. Measurement Science and Technology, 2006,17 ( 8 ) :2299-2305.
  • 9GADELMAWLA E S. Estimation of surface roughness for turning operations using image texture features [ J ]. Jour- nal of Engineering Manufacture, 2011, 225 ( 8 ) : 1281-1292.
  • 10LU D, WENG Q. A survey of image classification meth- ods and techniques for improving classification perform- ance[ J ]. Journal of Remote Sensing, 2007, 28 ( 5 ) : 823 -870.

共引文献44

同被引文献20

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部