期刊文献+

一种用于工件识别的LBP-HOG特征融合方法 被引量:5

A method on work piece image recognition based on LBP-HOG feature fusion
下载PDF
导出
摘要 针对目前机器人在工业现场对工件目标识别过程中出现的低识别率问题,提出一种基于GA寻优的LBP-HOG特征融合方法,结合SVM对工件图像进行分类识别.首先,分别运用了基本LBP算子、LBP等价模式以及LBP旋转不变模式,结合不同去噪方式,评价并选择最优的LBP算子,然后,利用LBP和HOG算子分别提取工件特征,并以组合向量方式融合两类特征.最后,利用GA寻优两类特征的融合权重,通过反复评价SVM对融合特征的识别效果,更新权重,最终得到最优权重和最优识别精度.实验结果表明,单独使用LBP和HOG的图像识别率分别为80%和84%,而GA寻优后的LBPHOG组合模型,准确率提高到了96%. Aiming at the problem of the low recognition rate at the industrial robot recognizing work piece target m the industrial field, this paper proposes a combined method named LBP-HOG based on GA intelligent optimization algorithm, combined with SVM to extract and recognize the features of the workpiece images. Firstly, basic LBP pattern, LBP uniform pattern and LBP rotation invariant pattern are used combining with various noise attenuation and the best LBP method is selected. Secondly, LBP and HOG are used to get the features of the work pieces separately, and then the features are fused in the way of combined vector approach. Finally, the best classification results and the optimal weight are acquired by evaluating classification effect, improving the classifi- cation accuracy through repeating the SVM classification model and updating the weight. The experimental results indicate that image recognition accuracy on GA optimization of LBP -HOG combination model is up to 96%, a good improved results is better than LBP and HOG image recognition rate of 80% and 84% respectively.
出处 《南阳师范学院学报》 CAS 2016年第9期33-38,共6页 Journal of Nanyang Normal University
基金 国家自然科学基金(61271377) 安徽工程大学优秀青年人才基金一般项目(2013RZR009)
关键词 局部二值模式 方向梯度直方图 特征融合 支持向量机 智能寻优 工件分类 LBP HOG composition pattern SVM intelligent optimization work piece classification
  • 相关文献

参考文献8

  • 1OJALA T,HARWOOD I. A comparative study of texturemeasures with classification based on feature distribu-tions[ J]. Pattern Recognition, 1996, 29(1) :51 - 59.
  • 2刘伟锋,李树娟,王延江.人脸表情的LBP特征分析[J].计算机工程与应用,2011,47(2):149-152. 被引量:19
  • 3DALAL N , TRIGGS B. Histograms of Oriented Gradi-ents for Human Detection [ J ]. IEEE Conference onComputer Vision & Pattern Recognition, 2013 , 1 ( 12):886 - 893.
  • 4王晓云.基于SVM的图像分类算法优化实现[J].信息安全与通信保密,2013,11(2):59-62. 被引量:5
  • 5MAENPAA T, PIETIKAINEN M. Texture analysis withlocal binary patterns [ M ]. 3rd ed. World Scientific,Singapore, 2001:711 - 736.
  • 6CORTES C, VAPNIK V. Support vector networks [ J].Machine Intelligence, 2012,20(3) :273 -297.
  • 7HSUCW, CHANG CC,LIN. CJ. A Practical Guide toSupport Vector Classification[ J].台湾大学资读工程学系,2003 ,67(5).
  • 8CHANG Chih-Chung’LIN Chih-Jen, LIBSVM : A Li-brary for Support Vector Machines [ J ]. Acm Transac-tions on Intelligent systems & Technology, 2011, 2(3);387 -396.

二级参考文献24

  • 1赵曼,张卫党.基于图像的信息隐藏技术的实现[J].通信技术,2008,41(5):128-129. 被引量:2
  • 2徐全生,李美怡.人脸图像特征点的定位与提取方法的研究[J].沈阳工业大学学报,2007,29(1):90-94. 被引量:11
  • 3王睿.关于支持向量机参数选择方法分析[J].重庆师范大学学报(自然科学版),2007,24(2):36-38. 被引量:39
  • 4Ojala T,Pietikainen M,Harwood D.A comparative study of texture measures with classification based on featured distribution[J]. Pattern Recognition, 1996, 1:51-59.
  • 5Ojala T, Pietikainen M, Maenpaa T.Multi-resolution gray-scale and rotation invariant texture classification with local binary patterns[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002,7 : 971-987.
  • 6Feng X, Hadid A, Pietikainen M.A coarse-to-fine classification scheme for facial expression recognition[C]//LNCS 3212: Proceedings of Image Analysis and Recognition,ICIAR 2004.[S.l.]: Springer, 2004 : 668-675.
  • 7Feng X, Hadid A, Pietiktiinen M.Facial expression recognition with local binary patterns and linear programming[J].Pattern Recognition and Image Analysis,2005,15 : 546-549.
  • 8Ojala T, Pietikaine M, Harwood D.A comparative study of texture measures with classification based on featured distributions[J]. Pattern Recognition, 1996,29 : 51-59.
  • 9Heusch G,Rodriguez Y,Marcel S.Local binary pattems as an image preprocessing for face authentication[C]//Proceedings of the 7th IEEE International Conference on Automatic Face and Gesture Recognition, Southampton, UK.Washington, DC, USA: IEEE Computer Society, 2006,2 : 9-14.
  • 10Ahonen T, Hadid A. Pietiikainen M.Face recognition with local binary pattems[C]//ECCV, 2004 : 469-481.

共引文献21

同被引文献56

引证文献5

二级引证文献30

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部