期刊文献+

两种非整合载体重编程人脐带血CD34^+细胞形成诱导多能干细胞的研究

Two efficient reprogramming methods of human cord blood CD34^+ cells induced pluripotent stem cells with non-integrating plasmid system
下载PDF
导出
摘要 目的探索两种非整合载体重编程人脐血来源的CD34^+细胞形成诱导性多能干细胞(iPSCs)的方法。方法利用细胞核转染仪分别将两组非整合质粒转入短暂培养后的脐带血CD34^+细胞中,使其进行重编程形成iPSCs,14d后两种方法均可观察到2×10~6个脐带血CD34^+细胞中约有900个类似ES细胞特征的克隆出现,并对产生的iPSCs进行体内外多能性鉴定及细胞核型检测。结果两种方法重编程效率基本相同,重编程形成的hiPSCs多能性基因OCT4、SOX2、NANOG的表达量与hES细胞系H1比较接近(P>0.05),而与CD34+细胞差别较大(P<0.05),且具有体内分化成三胚层的全能性。结论两种非整合质粒重编程人脐带血来源的CD34^+细胞形成iPSCs的方法,效率基本相同,均无外源基因插入,为建立相对安全的iPSCs提供了有效途径,为临床科研、药物筛选和再生医学研究等提供了较好的方法。 Objective To establish two episomal vector reprogramming methods to reprogram iPSCs from human cord blood (CB) CD34+ cells. Methods Two sets of non-integrating plasmids were respectively transported into two groups of short-term cultured CB CD34+ ceils by using transfector nucles, to reprogram iPSCs from CB CD34+ cells. Within 14 days of transfection by two sets of non-integrating plasmids, up to 900 iPSC-like colonies per 2 million transfected CB CD34+ cells were generated. And the pluripotency and karyotypes of iPSCs were tested in vitro. Results The repro- gramming efficiency of two methods was basically the same. The pluripotency genes OCT4, SOX2 and NANOG expression levels of the hiPSCs :were close to the hES cell line HI cells (P 〉 0.05), but different from the CD34+ cells (P 〈 0.05). Furthermore, the hiPSCs formed teratomas with three embryonic germ layers. Conclusion Two efficient reprogramming methods have basically the same efficiency, and no vector integration is found in iPSCs. It is concluded that the non-integrating plasmid system to generate human iPSCs from CB CD34+ cells is reliable and can provide new ways for clinical research, drug screening and regenerative medicine research.
出处 《中国医药导报》 CAS 2016年第24期21-26,共6页 China Medical Herald
基金 江苏省"333工程"培养资金资助项目(BRA2015152) 江苏省淮安市科技计划专项资金项目(HAS2015026)
关键词 诱导多潜能干细胞 重编程 脐带血CD34+细胞 非整合型质粒 Induced pluripotent stem cells Reprogramming Cord blood CD34+ cells Non-integrating plasmid
  • 相关文献

参考文献1

二级参考文献31

  • 1Yamanaka S. Patient-specific pluripotent stem cells become even more accessible. Cell Stem Cell 2010; 7:1-2.
  • 2Ye Z, Zhan H, Mali P, et al. Human-induced pluripotent stem cells from blood cells of healthy donors and patients with acquired blood disorders. Blood 2009; 114:5473-5480.
  • 3Loh YH, Agarwal S, Park IH, et al. Generation of induced pluripotent stem cells from human blood. Blood 2009; 113:5476-5479.
  • 4Giorgetti A, Montserrat N, Aasen T, et al. Generation of induced pluripotent stem cells from human cord blood using OCT4 and SOX2. Ceil Stem Cell 2009; 5:353-357.
  • 5Kunisato A, Wakatsuki M, Shinba H, et al. Direct Generation of Induced Pluripotent Stem Cells from Human Non-mobilized Blood. Stem Cells Dev 2010 Sep 14. doi:10.1089/ scd.2010.0063.
  • 6Brown ME, Rondon E, Rajesh D, et al. Derivation of induced pluripotent stem cells from human peripheral blood T lym-phocytes. PLoS One 2010; 5:el 1373.
  • 7Seki T, Yuasa S, Oda M, et al. Generation of induced pluripotent stem cells from human terminally differentiated circulating T cells. Cell Stem Cell 2010; 7:11-14.
  • 8Loh YH, Hartung O, Li H, et al. Reprogramming of T cells from human peripheral blood. Cell Stern Cell 2010; 7:15 - 19.
  • 9Staerk J, Dawlaty MM, Gao Q, et al. Reprogramming of hu-man peripheral blood cells to induced pluripotent stem cells. Cell Stem Cell 2010; 7:20-24.
  • 10Serwold T, Hochedlinger K, Inlay M, Jaenisch R, Weissman IL. Early TCR expression and aberrant T cell development in mice with endogenous prerearranged T cell receptor genes. J Immunol 2007; 179:928-938.

共引文献39

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部