期刊文献+

基于环磁美特材料的无线传能系统 被引量:2

Wireless power transfer system based on toroidal metamaterials
下载PDF
导出
摘要 传统的四线圈磁共振耦合无线传能系统已在移动电子设备、电动汽车无线充电中得以应用,然而,其传能效率仍然因其磁场空间分布的发散性而难以提高.为了克服上述缺点,我们提出了一种基于环磁美特材料、磁场更为局域的高效无线传能系统.该系统将四线圈系统中的一对磁谐振耦合线圈替换为具有环磁谐振特性的四个非对称开口谐振环.该环磁模式具有高Q值、低金属损耗以及辐射抑制的特性.实验结果表明,相对于四线圈系统,该系统的磁场更为集中,能量传输效率更高. Now, the traditional four-coil magnetic coupling systems have been used in the wireless charging of mobile electronic devices and electric vehicles. However, the system efficiency is difficult to improve due to the divergence of spatial distribution of magnetic field. To overcome this disadvantage, we propose an efficient system based on the toroidal metamaterials, which support a resonant electromagnetic mode that is dominated by the toroidal moment. The toroidal moment is produced by currents flowing on the surface of a torus along its meridian. It presents remarkable ability to localize the field and suppress the radiation. This new toroidal magnetic mode system (TMMS) consists of four asymmetric split resonant rings (ASRRs). Pairs of ASRRs in the same unit (transmit unit and receiver unit) have mirror symmetry about the yz plane. Pairs of ASRRs in different units have 180? rotational symmetry about the x axis. These four rings support the toroidal magnetic resonant mode (dominated by toroidal moment). For comparison, we also construct two symmetric split resonant rings to imitate the four-coil system (FCS). It supports parallel magnetic mode (dominated by magnetic dipole moment) and antiparallel magnetic mode (dominated by magnetic dipole moment and magnetic quadrupole moment). To confirm the improvement of efficiency, we compare the transmission of the TMMS with that of the FCS at the same transfer distance (10 mm). The TMMS presents a higher transmission and the increase in simulation (experiment) is 81%(40%). The toroidal magnetic mode in the TMMS also exhibits low metal loss, which is reflected in these spectra. The simulated distributions of magnetic field line corresponding to the resonantly magnetic modes in both systems are provided in this article. Instead of divergence in FCS, the magnetic field lines of TMMS are well constrained around the four rings and form closed loops along these rings. The density of the field line and the magnitude of field near the receiving coil are both enhanced. So the system efficiency, which is determined by the magnetic flux of the receiving coil, is improved. The dispersions of radiation power for various induced multipole moments from the two systems are also calculated. The dominance of toroidal moment corresponding to the resonant mode in TMMS is verified and the radiation is suppressed to 1/4 of FCS. Finally, the transmissions of two systems at different transfer distances are presented. The toroidal magnetic mode system presents a higher efficiency at strong coupling area (0–25 mm). The average increase of the transmission in simulation (experiment) is 73%(46%). In summary, the proposed new system exhibits the properties of high efficiency, low metal loss and low radiation loss with the multiport output. It would have broad prospects of practical application in WPT.
出处 《物理学报》 SCIE EI CAS CSCD 北大核心 2016年第16期278-284,共7页 Acta Physica Sinica
基金 国家重点基础研究发展计划(批准号:2011CB922001) 国家自然科学基金(批准号:51377003,11234010)资助的课题~~
关键词 无线能量传输 美特材料 磁共振耦合 环磁极矩 wireless power transfer metamaterial magnetic resonant coupling toroidal moment
  • 相关文献

参考文献30

  • 1Kurs A, Karalis A, Moffatt R, Joannopoulos J D, Fisher P, Soljacic M 2007 Science 317 83.
  • 2Karalis A, Joannopoulos J D, Soljacic M 2008 Ann. Phys. 323 34.
  • 3Hamam R E, Karalis A, Joannopoulos J D, Soljacic M 2009 Ann. Phys. 324 1783.
  • 4Oh K S, Lee W S, Lee W S, Yu J W 2012 Appl. Phys. Lett. 101 064105.
  • 5Lee W S, Lee H L, Oh K S, Yu J W 2012 Appl. Phys. Lett. 100 214105.
  • 6Veselago V G 1968 Sov. Phys. Usp. 10 509.
  • 7Shelby R A, Smith D R, Schultz S 2001 Science 292 77.
  • 8Schurig D, Mock J J, Justice B J, Cummer S A, Pendry J B, Starr A F, Smith D R 2006 Science 314 977.
  • 9Xi S, Chen H, Jiang T, Ran L, Huangfu J, Wu B I, Kong J, Chen M 2009 Phys. Rev. Lett. 103 194801.
  • 10Yu J B, Ma H, Wang J F, Li Y F, Feng M D, Qu S B 2015 Chin. Phys. B 24 098102.

同被引文献11

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部