期刊文献+

基于二维本征模态函数的SAR图像目标检测 被引量:1

SAR Image Target Detection Based on Two Dimensional Intrinsic Mode Function
下载PDF
导出
摘要 合成孔径雷达(SAR)成像具有其独特的优势,能全天时全天候获取目标区域遥感数据,但是其成像机理复杂,获得的SAR图像解译困难。从SAR成像回波特点出发,结合二维经验模态分解(BEMD)理论,提出了一种基于二维本征模态函数(BIMF)的SAR图像目标检测算法。采用仿真和实际的SAR图像数据进行了验证实验,实验结果表明,利用融合的BIMF特征分量检测目标,其效果优于直接用原始SAR图像进行目标检测,并且对不同信噪比的SAR图像,具有较强适应能力。 Synthetic aperture radar( SAR) imaging has its unique advantages,obtaining remote sensing data of target area under all-time and all-weather,but the imaging mechanism is very complex and the right interpretation of SAR images is rather difficult. From the principle of the SAR echo characteristics,combined with the bidimensional empirical mode decomposition( BEMD) theory,a new SAR image target detection algorithm was proposed,which is based on bidimensional intrinsic mode function( BIMF). The simulation and actual SAR image data were used to test the proposed method,and experimental results show the effect of target detection using the fused BIMF feature components is better than that of the direct detection with original SAR image,and it has strong ability to adapt for different signal to noise ratio SAR image.
出处 《兵器装备工程学报》 CAS 2016年第8期93-97,共5页 Journal of Ordnance Equipment Engineering
基金 国家自然科学基金资助项目(61379031 41574008)
关键词 二维本征模态函数 SAR图像 目标检测 特征融合 bidimensional intrinsic mode function SAR image target detection feature fusion
  • 相关文献

参考文献2

二级参考文献28

  • 1贾承丽,匡纲要.SAR图像去斑方法[J].中国图象图形学报(A辑),2005,10(2):135-141. 被引量:24
  • 2黄世奇,刘代志.SAR图像斑点噪声抑制方法与应用研究[J].测绘学报,2006,35(3):245-250. 被引量:30
  • 3Wang S H, Lin Yuanpei. Wavelet Tree Quantization for Copyright Protection Watermarking[J]. IEEE Trans. on Image Processing, 2004, 13(2): 154-165.
  • 4Nunes J C, Niang O, Bouaoune Y, et al. Bidimensional Empirical Mode Decomposition Modified for Texture Analysis[C] //Proc. of Scandinavian Conference on Image Analysis. Berlin, Germany:[s. n.] , 2003: 171-177.
  • 5Nunes J C, Guyot S, Delechelle E. Texture Analysis Based on Local Analysis of the Bidimensional Empirical Mode Decomposition[J]. Machine Vision and Applications, 2005, 16(3): 177-188.
  • 6Huang N E. The Empirical Mode Decomposition and the Hilbert Spectrum for Non-linear and Non-stationary Timeseries Analysis[J]. Proceedings of the Royal Society, 1998, 454(1971): 903-995.
  • 7Liang Lingfei, Ping Ziliang. Information Hiding Based on Empiri- cal Mode Decomposition[C] //Proc. of IEEE Pacific-Asia Work- shop on Computational Intelligence and Industrial Application. Wuhan, China:[s. n.] , 2008: 561-563.
  • 8孙水发,李海军,蒋铭,万钧力.数字水印的应用及需求分析[J].信息技术,2007,31(9):8-11. 被引量:8
  • 9Huang N E, Shen Z, Long S R. The Empirical Mode Decomposition and the Hilbert Spectrum for Nonlinear Nonstationary Time Series Analysis[J]. Proc R Soc Lond A, 1998, 454:903-995.
  • 10Kopsinis Y, Mclaughli S. Development of EMD Based Denoising Methods Inspired by Wavelet Thresholding[J]. IEEE Transactions on Signal Pro- cessing, 2009, 57(4):151-162.

共引文献9

同被引文献3

引证文献1

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部