期刊文献+

基于互信息的混合属性数据特征选择方法 被引量:5

Mutual information based feature selection for mixed attributes data
下载PDF
导出
摘要 对于混合属性条件下的特征选择问题,给出了一种基于互信息的特征选择方法。首先,将互信息的定义推广到混合属性,在给出其计算方法的基础上,利用互信息定义了一种新的混合属性间的相关性度量;然后,通过对过滤式特征选择中的评价准则进行改造,完成原始特征的初选;最后,以估算精度为标准,对过滤式特征选择中的参数进行优化,确定最终的特征子集。实验结果表明:该方法具有较好的稳定性和估算精度。 For feature selection with mixed attributes data, a mutual information based method is pro- posed. Firstly, the concept of mutual information is extended to mixed attributes. By presenting a method for calculating mutual information between continuous and discrete attributes, a relevance measurement between mixed attributes is defined; Secondly, the features are evaluated by reconstructing the evaluating criterion in filter feature selection; Finally, features are selected by optimizing the parameter in filter feature selection with estimation accuracy criterion. Experimental results show that the method acquires preferable stability and estimation accuracy;
出处 《海军工程大学学报》 CAS 北大核心 2016年第4期78-84,共7页 Journal of Naval University of Engineering
基金 海军工程大学自然科学基金资助项目(HGDQNEJJ15002 HGDQNJJ15003) 海军工程大学社会科学基金资助项目(HGDSK2015E10)
关键词 特征选择 混合属性 互信息 过滤式 封装式 feature selection mixed attributes mutual information filter wrapper
  • 相关文献

参考文献6

  • 1姚旭,王晓丹,张玉玺,权文.特征选择方法综述[J].控制与决策,2012,27(2):161-166. 被引量:207
  • 2FERREIRA A,FIGUEIREDO M.Unsupervisedjoint feature discretization and selection [J].Lec-ture Notes in Computer Science,2011,6669:200-207.
  • 3杨明,杨萍.基于广义差别矩阵的核和属性约简算法[J].控制与决策,2008,23(9):1049-1054. 被引量:19
  • 4HU Q H,ZHANG L,ZHANG D,et al.Measu-ring relevance between discrete and continuous fea-tures based on neighborhood mutual information[J].Expert Systems with Applications,2011,38:10737-10750.
  • 5SCHAFFERNICHT E, KALTENAEUSER R,VERMA S S,et al.On estimating mutual infor-mation for feature selection [J].Lecture Notes inComputer Science,2010,6325(1):362-367.
  • 6PENG H C,LONG F H,DING C.Feature selec-tion based on mutual information:Criteria of max-dependency,max-relevance,and min-redundancy[J].IEEE Transactions on Pattern Analysis andMachine Intelligence,2005,27(8):1226-1238.

二级参考文献64

  • 1杨明.一种基于改进差别矩阵的核增量式更新算法[J].计算机学报,2006,29(3):407-413. 被引量:76
  • 2杨明.一种基于改进差别矩阵的属性约简增量式更新算法[J].计算机学报,2007,30(5):815-822. 被引量:112
  • 3Li G-Z, Yang J Y. Feature selection for ensemble learning and its application[M]. Machine Learning in Bioinformatics, 2008: 135-155.
  • 4Sheinvald J, Byron Dom, Wayne Niblack. A modelling approach to feature selection[J]. Proc of 10th Int Conf on Pattern Recognition, 1990, 6(1): 535-539.
  • 5Cardie C. Using decision trees to improve case-based learning[C]. Proc of 10th Int Conf on Machine Learning. Amherst, 1993: 25-32.
  • 6Modrzejewski M. Feature selection using rough sets theory[C]. Proc of the European Conf on Machine ,Learning. 1993: 213-226.
  • 7Ding C, Peng H. Minimum redundancy feature selection from microarray gene expression data[J]. J of Bioinformatics and Computational Biology, 2005, 3(2): 185-205.
  • 8Francois Fleuret. Fast binary feature selection with conditional mutual information[J]. J of Machine Learning Research, 2004, 5(10): 1531-1555.
  • 9Kwak N, Choi C-H. Input feature selection by mutual information based on Parzen window[J]. IEEE Trans on Pattern Analysis and Machine Intelligence, 2002, 24(12): 1667-1671.
  • 10Novovicova J, Petr S, Michal H, et al. Conditional mutual information based feature selection for classification task[C]. Proc of the 12th Iberoamericann Congress on Pattern Recognition. Valparaiso, 2007: 417-426.

共引文献224

同被引文献40

引证文献5

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部