期刊文献+

线性分段连续型延迟微分方程的变分迭代解法

Variational Iteration Method for Linear Differential Equation with Piecewise Continuous Arguments
下载PDF
导出
摘要 主要利用变分迭代法求解自变量分段连续型延迟微分方程的初值问题,由变分理论得到了拉格朗日乘子,进而构造了迭代关系式,在不同的区间上求得了各阶解析近似解,并且证明了收敛性,连续级数收敛结果和真实解的形式一致.通过具体的实例验证了该方法的有效性和可靠性. This paper deals with the problem of delay differential equation with piecewise continuous arguments.The lagrange multiplier is obtained according to the theory ofvariation,then the iteration formula is constructed. Moreover,the analytical approximation solutions in different intervals are given and the convergence is proved. Finally,the theoretical results are verified by some some numerical examples.
出处 《嘉应学院学报》 2016年第8期8-13,共6页 Journal of Jiaying University
关键词 变分迭代方法 拉格朗日乘子 时滞微分方程 解析近似解 variational iteration method lagrange multiplier delay differential equ ~ ions analytical approxlmanon solution
  • 相关文献

参考文献13

二级参考文献99

  • 1郭坤,潘家齐.具时滞和Holling功能性反应的捕食-被捕食系统的稳定性及Hopf分支[J].黑龙江大学自然科学学报,2006,23(4):502-505. 被引量:3
  • 2Ulsoy A G. Analytical solution of a system of homogeneous delay differential equations via the Lambert function[C]//In: Proceedings of the American Control Conference, Chicago, IL, June 2000.
  • 3Evans D J, Raslan K R. The Adomin decomposition method for solving delay differential equa- tion[J]. Int J Comput Math, 2005, 82: 49-52.
  • 4Adomian G, Rach R. Nonlinear Stoclastic differential delay equation[J]. J Math Anal Appl, 1983, 91: 11-17.
  • 5Adomian G, Rach R. A nonlinear delay differential equation[J]. J Math Anal Appl, 1983, 91: 301- 304.
  • 6Shakeri F, Dehghan M. Solution of dela: differential equations via a homotopy perturbation method[J]. Math Comput Model, 2008, 48: 486-498.
  • 7He J H. Some asymptotic methods for strongly nonlinear equation[J]. Int J Mod Phys, 2006, 20(10): 1144-1199.
  • 8He J H. Variational iteration methodsone recent results and new interpretations[J]. J Comput Appl Math, 2007, 207: 3-17.
  • 9He J H, Wu X. Variational iteration method: new developments and applications[J]. Comput Math Appl, 2007, 54: 881-894.
  • 10Inokuti M, Sekine H, Mura T. General use of the Lagrange multiplier in nonlinear mathematical physics[J]. In: Nemat-Naseer, S. (ed.) Variational Method in the Mechanics of Solids, Pergamon Press, New York, 1978: 156-162.

共引文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部