期刊文献+

冷原子系综中量子关联光子对的产生 被引量:1

The Generation of Quantum Correlated Photon Pairs in Cold Atomic Ensemble
原文传递
导出
摘要 本文在87 Rb冷原子系综中通过自发拉曼散射过程进行了量子关联光子对产生的实验研究,测量了关联光子对的产生率和二阶关联函数g(2)随写光激发率、读光功率以及写光失谐等实验参数的关系曲线。结果表明:随着写光激发率的增加,光子对产生率线性增加,g(2)则不断减小;在小的读光功率处,光子对产生率和g(2)随着读光功率增加而增大,当读光功率超过30 mW后,产生率和g(2)随着读光功率增加反而有所下降;写光频率失谐为-5 MHz时光子对产生率和g(2)均达到最低,增大或减小写光失谐产生率和g(2)均逐渐增加。通过选取合适的实验参数,光子对产生率达到18对/秒,同时g(2)为106。本文的研究结果为产生高质量的纠缠源提供了实验基础。 We used the Spontaneous Raman scattering of the 87 Rb cold atomic ensemble to generate the quantum correlated photon pairs.In our experiment,we measured the influence of the excitation probability of writing light field,the writing light field detuning and the power of the reading light field to the secondorder correlation function and coincidence counts.The results showed that as the the writing light field excitation probability increases,the g(2)of the quantum correlated photon pairs decrease gradually.The generation rates and the g(2)of the quantum correlated photon pairs increase with the low power of the reading light field. When the reading light field is added to 30 mW,the g(2)and coincidence counts decreases instead of increaseng.As the detuning of writing light field is-5 MHz,the generation rates and the g(2)of the correlated photon pairs are the lowest.Either to increase or to decrease the detuning,the generation rates and the g(2)increase.By choosing the proper parameters,the generation rates reach 18 pairs per second with the g(2)is 106.The conclusion of this paper provides an experimental basis for generating high quality entanglement source.
出处 《量子光学学报》 北大核心 2016年第3期235-240,共6页 Journal of Quantum Optics
基金 973计划(2010CB923103) 国家自然科学基金(11475109 11274211 60821004)
关键词 冷原子系综 自发拉曼散射 量子关联光子对 二阶关联函数 cold atomic ensemble spontaneous raman scattering quantum correlated photon pairs the second-order correlation function
  • 相关文献

参考文献14

  • 1Pan J W,Chen Z B,Lu C Y,et al.Multi-photon Entanglement and Interferometry[J].Rev Mod Phys,2012,84:777-838.DOI:10.1103/Rev Mod Phys.84.777.
  • 2Sangouard N,Simon C,Riedmatten H de,et al.Quantum Repeaters Based on Atomic Ensembles and Linear Optics[J].Rev Mod Phys,2011,83:33-80.DOI:10.1103/Rev Mod Phys.83.33.
  • 3Zhao B,Chen Z B,Chen Y A,et al.Robust Creation of Entanglement between Remote Memory Qubits[J].Phys Rev Lett,2007,98:240502-204505.DOI:10.1103/Phys Rev Lett.98.240502.
  • 4Chen Z B,Zhao B,Chen Y A,et al.Fault-tolerant Quantum Repeater with Atomic Ensembles and Linear Optics[J].Phys Rev A,2007,76:022329-022340.DOI:10.1103/Phys Rev A.76.022329.
  • 5Knill E,Laflamme R,Milburn G J.A Scheme for Efficient Quantum Computation with Linear Optics[J].Nature(London),2001,409:46.DOI:10.1038/35051009.
  • 6Yao X C,Wang T X,Chen H Z,et al.Experimental Demonstration of Topological Error Correction[J].Nature(London),2012,482:489.DOI:10.1038/nature10770.
  • 7Chen S,Chen Y A,et al.Deterministic and Storable Single-photon Source Based on a Quantum Memory[J].Phys Rev Lett,2006,97:173004.DOI:10.1103/Phys Rev Lett.97.173004.
  • 8Yan H,Zhang S,Chen J F,et al.Generation of Narrow-band Hyperentangled Nondegenerate Paired Photons[J].Phys Rev Lett,2011,106:033601-033604.DOI:10.1103/Phys Rev Lett.106.033601.
  • 9Ding D S,Zhang W,Zhou Z Y,et al.Raman Quantum Memory of Photonic Polarized Entanglement[J].Nature Photon,2015,9:332-338.DOI:10.1038/nphoton.2015.43.
  • 10Duan L M,et al.Long-distance Quantum Communication with Atomic Ensembles and Linear Optics[J].Nature,2001,414:413.DOI:10.1038/35106500.

同被引文献4

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部