期刊文献+

Validation of a steel dual-core self-centering brace (DC-SCB) for seismic resistance: from brace member to one-story one-bay braced frame tests 被引量:1

Validation of a steel dual-core self-centering brace (DC-SCB) for seismic resistance: from brace member to one-story one-bay braced frame tests
原文传递
导出
摘要 A steel dual-core self-centering brace (DC-SCB) is an innovative structural member that provides both energy dissipation and self-centering properties to structures, reducing maximum and residual drifts of structures in earthquakes. The axial deformation capacity of the DC-SCB is doubled by a parallel arrangement of two inner cores, one outer box and two sets of tensioning elements. This paper presents cyclic test results of a DC-SCB component and a full- scale one-story, one-bay steel frame with a DC-SCB. The DC-SCB that was near 8 m-long was tested to evaluate its cyclic behavior and durability. The DC-SCB performed well under a total of three increasing cyclic loading tests and 60 low- cycle fatigue loading tests without failure. The maximum axial load of the DC-SCB was near 1700 kN at an interstory drift of 2.5%. Moreover, a three-story dual-core self-centering braced frame (DC-SCBF) with a single-diagonal DC-SCB was designed and its first-story, one-bay DC-SCBF subassembly specimen was tested in multiple earthquake-type loadings. The one-story, one-bay subassembly frame specimen performed well up to an interstory drift of 2% with yielding at the column base and local buckling in the steel beam; no damage of the DC-SCB was found after all tests. The maximum residual drift of the DC-SCBF caused by beam local buckling was 0.5% in 2.0% drift cycles. A steel dual-core self-centering brace (DC-SCB) is an innovative structural member that provides both energy dissipation and self-centering properties to structures, reducing maximum and residual drifts of structures in earthquakes. The axial deformation capacity of the DC-SCB is doubled by a parallel arrangement of two inner cores, one outer box and two sets of tensioning elements. This paper presents cyclic test results of a DC-SCB component and a full- scale one-story, one-bay steel frame with a DC-SCB. The DC-SCB that was near 8 m-long was tested to evaluate its cyclic behavior and durability. The DC-SCB performed well under a total of three increasing cyclic loading tests and 60 low- cycle fatigue loading tests without failure. The maximum axial load of the DC-SCB was near 1700 kN at an interstory drift of 2.5%. Moreover, a three-story dual-core self-centering braced frame (DC-SCBF) with a single-diagonal DC-SCB was designed and its first-story, one-bay DC-SCBF subassembly specimen was tested in multiple earthquake-type loadings. The one-story, one-bay subassembly frame specimen performed well up to an interstory drift of 2% with yielding at the column base and local buckling in the steel beam; no damage of the DC-SCB was found after all tests. The maximum residual drift of the DC-SCBF caused by beam local buckling was 0.5% in 2.0% drift cycles.
出处 《Frontiers of Structural and Civil Engineering》 SCIE EI CSCD 2016年第3期303-311,共9页 结构与土木工程前沿(英文版)
关键词 dual-core self-centering brace (DC-SCB) braced frame tests residual deformation dual-core self-centering brace (DC-SCB), braced frame tests, residual deformation
  • 相关文献

同被引文献6

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部