摘要
在文章[13]和[14]研究的基础上,根据模糊数互反和互补判断矩阵之间的转换关系,利用连结模糊数和精确数的分解定理,结合经典理论中正互反判断矩阵的权重求解方法,给出了基于乘性一致性构建的模糊数互补判断矩阵的权重模糊数求解算法,最后通过一个实例说明了此算法的可行性。
This paper researche the base of paper[ 13 ] and [ 14 ]. According to the conversion relation of fuzzy number reciprocal judgment matrix and fuzzy complementary judgment matrix, it uses the decomposition theory which joins the fuzzy number and precision number, and it relates a method of solving weights of the reciprocal judgment matrices in the classic theory. This paper reaches a solution algorithm of weighted fuzzy number based on fuzzy number complementary judgment matrix built by multiplicative consistency. At last, it shows the feasibility of this algorithm bv a case.
出处
《运筹与管理》
CSSCI
CSCD
北大核心
2016年第4期63-68,共6页
Operations Research and Management Science
基金
国家自然科学基金
高等学校博士学科点专项科研基金资助项目(70771010
71071018
70801064
20111101110036)
关键词
管理科学与工程
模糊数
互补判断矩阵
互反判断矩阵
乘性一致性
management science and engineering
fuzzy number
complementary judgment matrix
reciprocal judgment matrices
muhiplicative consistency