期刊文献+

人工蜂群算法在LRIP机会约束模型中的应用 被引量:2

Artificial Bee Colony Algorithm for Chance-constrained Model of LRIP
下载PDF
导出
摘要 针对现有研究中未考虑配送阶段客户随机需求的问题,本文采用在一定置信区间上满足客户需求的方法,描述这种客户需求不确定的约束,在此基础上,建立了选址-路径-库存问题(Location-Routing-Inventory Problem,LRIP)的机会约束模型。提出人工蜂群算法(Artificial Bee Colony algorithm,ABC)对该问题模型进行优化求解。结合问题特征和邻域知识,提出了一种基于矩阵的编码方法,构造了启发式初始化方法,设计了2种基于矩阵编码的交换策略,在此基础上构造了5种蜂群搜索算子。通过仿真实验,分析比较了初始化方法和5种搜索策略;同时将人工蜂群算法与两阶段法进行了比较,优化结果证明人工蜂群算法是求解LRIP问题的有效方法。 As the uncertain demand of customers in the delivery stage has not been considered in the current research, it is proposed to use the method that the loading capacity of the vehicle meets the demand of customers at a certain confidence interval to express the uncertainty constraint in the paper. Then a chance-constrained model of Location-Routing-Inventory Problem (LRIP)is established. Furthermore, the artificial bee colony algorithm (ABC) is applied to solve the model. According to the characteristics of the LRIP and the knowledge of the solution's domain structure, a new encoding method based on matrix is proposed. Base on this, a heuristic initialization method is established, and two kinds of exchange policies based on the matrix coding are designed. Additionally, five kinds of artificial bees search strategies are proposed. Finally, the initialization methods and the five kinds of artificial bees search strategies are compared in the experiments. The artificial bee colony algorithm with the two-stage method is also compared. The simulation results show that the artificial bee colony algorithm is an effective algorithm to solve the LRIP.
作者 吴斌 董敏
出处 《运筹与管理》 CSSCI CSCD 北大核心 2016年第4期209-214,共6页 Operations Research and Management Science
基金 教育部人文社科青年项目(11YJCZH184) 江苏省高校自然科学基金(13KJB520010)
关键词 运筹学 人工蜂群算法 机会约束 选址-路径-库存问题 perations research artificial bee colony algorithm chance-constrained location-routing-inventory problem
  • 相关文献

参考文献15

  • 1Liu S C, Lee S B. A two-phase heuristic method for the multl-depot location routing problem taking inventory con- trol decisions into consideration[ J]. International Journal Manufacturing Technology, 2003, 22( 11): 947-950.
  • 2Liu S C, Lin C C. A heuristic method for the combined location muting and inventory problem [ J 3. International Journal Manufacturing Technology, 2005, 26(4) : 372-381.
  • 3Ambrosino D, Scutella M G. Distribution network design: new problems and related models [ J ]. European Journal of Operational Research, 2005, 165(3): 610-624.
  • 4Shen Z J, Qi L. Incorporation inventory and routing costs in strategic location models [ J ]. European Journal of Operational Research, 2007, 179(2): 372-389.
  • 5Javid A A, Azad N. Incorporating location, routing and inventory decisions in supply chain network design [ J ]. Transportation Research Part E, 2010, 46 (5) : 582-597.
  • 6崔广彬,李一军.基于双层规划的物流系统集成定位-运输路线安排-库存问题研究[J].系统工程理论与实践,2007,27(6):49-55. 被引量:30
  • 7崔广彬,李一军.模糊需求下物流系统CLRIP问题研究[J].控制与决策,2007,22(9):1000-1004. 被引量:18
  • 8Jiang S, Ma Z J. A hybrid genetic algorithm for the stochastic dynamic location-routing-inventory problem in closed-loop logistics system for reusing end-of-use prod- ucts [ C 1. Proceedings of the 2nd International Confer- ence on Transportation Engineering, American Society of Civil Engineers, 2009. 4055-4060.
  • 9Ma Z J, Dai Y. A stochastic location-routing-inventory problem in logistics distribution systems [ C ]. Internation- al Conference on Transportation Engineering, American Society of Civil Engineers , 2007. 1433-1438.
  • 10Wang C, Ma Z J , Li H. Stochastic dynamic location- routing-inventory problem in closed-loop logistics system for reusing end - of - use products [ C ]. International Conference on Intelligent Computation Technology and Automation, IEEE, 2008. 691-695.

二级参考文献34

  • 1吴春明,陈治,姜明.蚁群算法中系统初始化及系统参数的研究[J].电子学报,2006,34(8):1530-1533. 被引量:47
  • 2马溪骏,潘若愚,杨善林.基于信息素递减的蚁群算法[J].系统仿真学报,2006,18(11):3297-3300. 被引量:18
  • 3Basturk B, Karaboga D. An artificial bee colony (ABC) algorithm for numeric function optimization[C]//Proceedings of IEEE Swarm Intelligence Symposium Indianapolis. Indianapdis, USA" [s. n. ], 2006:651 - 656.
  • 4Fathian M, Amiri B, Maroosi A. Application of honey bee mating optimization algorithm on clustering[J]. Applied Mathematics and Computation, 2007 (10) : 1016 - 1025.
  • 5Von Frisch K. The dance language and orientation of bees[M]. Boston, Massachusetts, USA.. The Belknap Press of Harvard University Press, 1967.
  • 6Abbass H A. Arriage in honey-bee optimization (MBO) : a haplometrosis polygynous swarming approach [C]//Proceedings of The Congress on Evolutionary Computation (CEC2001). Seoul, Korea: [s. n. ], 2001:207 - 214.
  • 7Gutin G, Punnen A. The traveling salesman problem and its variations[M]. Dordrecht, Holland: Kluwer Academic Publishers, 2002.
  • 8Afshar A, Bozog H O, Marino M A. Honey-bee mating optimization (HBMO) algorithm for optimal reservoir operation [J]. Journal of the Franklin Institute, 2007,344: 452 - 462.
  • 9Haddad O B, Afshar A, Marino M A. Honey-bees mating optimization (HBMO) algorithm: a new heuristic approach for water resources optimization[J]. Water Resources Management, 2006,20 : 661 - 680.
  • 10Seeley T D. The wisdom of the hive: the social physiology of honey bee colonies[M]. Boston, Massachusetts, USA: Harvard University Press, 1995.

共引文献103

同被引文献45

引证文献2

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部