摘要
针对认知无线电频谱分配时分配率低、用户满意度不高的问题,提出了适应值预测的粒子群优化算法(FPPSO),利用FP-PSO算法优化了认知无线电频谱分配过程,设计的适应值预测方法提高了分配效率的同时满足了实时性要求。实验结果表明:FP-PSO算法在降低部分网络效益的同时,获得了比颜色敏感图着色算法(CSGC)更优的用户满意度、平均分配时间和用户公平性。
As distribution rate and customer satisfaction were not high in the process of the spectrum allocation for cognitive radio, Fitness Prediction of Particle Swarm Optimization (FP-PSO) was proposed , using FP-PSO algorithm to optimize the cognitive radio spectrum allocation process , fitness prediction methods is designed to improve the allocation efficiency while meeting the real-time requirements. The experimental results showed that: FP-PSO algorithm reduced a part of network bandwidth benefit, at the same user satisfaction, allocation efficiency, the average assignment time and the user fairness are better than the color sensitive graph coloring algorithm (CSGC).
出处
《电子设计工程》
2016年第16期127-130,共4页
Electronic Design Engineering
基金
新疆维吾尔自治区高校科研计划青年教师科研启动基金项目(XJEDU2014S074)
关键词
适应值预测
粒子群算法
认知无线电
频谱分配
fitness prediction
particle swarm optimization
cognitive radio
spectrum allocation