期刊文献+

基于ELPSO阵元失效校正的研究

ELPSO-Based Research on Array Element Failure Correction
下载PDF
导出
摘要 阵列天线经常存在阵元失效现象,且在一些特殊的情况下阵元替换十分不便.运用改进粒子群算法——提高领导能力的粒子群算法对失效后的阵面进行优化,在常规粒子群算法的基础上,对每次迭代得出最优粒子之后进行4次连续突变,包括2步长突变和2步短突变,增大得到更优解的可能性,使经过算法校正后的阵面天线降低性能投入使用.与常规粒子群算法实验结果进行对比,结果证明,ELPSO能够得到更优的副瓣电平. The phenomenon of array element failure often occurs in array antenna,and in some special cases,the array element replacement is very inconvenient.In this paper,the improved particle algorithm-Enhanced Leader Particle Swarm Optimization-is used to optimize the failed array face.Using the method of ELPSO,the authors obtain the best particle after every iteration,then do four times of continuous mutations,including two-step long mutations and two-step short mutations so as to increase the possibility of acquiring a better solution and use the ELPSO-corrected array antenna in a degraded performance.This paper proves that,compared with the experimental results of conventional particle swarm algorithm,the method of ELPSO can obtain better minor-lobe electrical level.
出处 《军械工程学院学报》 2016年第4期50-53,共4页 Journal of Ordnance Engineering College
关键词 相控阵天线 阵元失效 改进粒子群算法 失效校正 phased array antenna array element failure ELPSO failure correction
  • 相关文献

参考文献9

  • 1RODRIGUEZ J A,ARES F.Optimization of the performance of arrays with failed elements using simulated annealing technique [J]. Journal of electromagnetics wave and applications, 1998(12) .. 1625-1638.
  • 2KENNEDY J,EBERHART R C.Particle swarm optimization [C]//Proceedings of the IEEE International Conference on Neural Networks. Washington D. C. [S. 1.], 1995.. 1942-1948.
  • 3KENNEDY J ,EBERHART R C.A new optimizer using particle swarm theory [C]// Proceedings of the 6th International Symposium on Micro Machine and Human Science. Nagoya .. [S.I.], 1995 .. 39-43.
  • 4TANWEER R, SURESH S, SUNDARARAJAN N. Self- regulating particle swarm optimization algorithm [J]. Information sciences, 2015 (294) .. 182-202.
  • 5HAN W, YANG P,REN H,et al. Comparison study of several kinds of inertia weight for PSO [ C]// Proceedings of the IEEE International Conference on Progress in Informatics and Computing. Shanghai; [S. 1. ] ,2010:280-284.
  • 6杨久红,王小增.改进的混合粒子群算法[J].微电子学与计算机,2012,29(5):170-173. 被引量:4
  • 7LIM W H, MAT-ISA N A. Bidirectional teaching and peer-learning particle swarm optimization [ J ]. Information science, 2014 (273) : 49-72.
  • 8张慧斌,王鸿斌,胡志军.PSO算法全局收敛性分析[J].计算机工程与应用,2011,47(34):61-63. 被引量:21
  • 9JORDEHI A R. Enhanced leader PSO (EI.PSO) :a new PSO variant for solving global optimisation problems [J]. Applied soft computing, 2015 ( 26 ) : 401-417.

二级参考文献17

  • 1曾建潮,崔志华.一种保证全局收敛的PSO算法[J].计算机研究与发展,2004,41(8):1333-1338. 被引量:160
  • 2任斌,丰镇平.改进遗传算法与粒子群优化算法及其对比分析[J].南京师范大学学报(工程技术版),2002,2(2):14-20. 被引量:34
  • 3李宁,孙德宝,邹彤,秦元庆,尉宇.基于差分方程的PSO算法粒子运动轨迹分析[J].计算机学报,2006,29(11):2052-2060. 被引量:48
  • 4Kennedy J, Eberhart R C.Particle swarm optimization[C]// Proceedings of the IEEE International Conference on Neural Networks,Perth Australin, 1995 : 1942-1948.
  • 5Solis F, Wets R.Minimization by random search techniques[J]. Mathematics of Operations Research, 1981,6:19-30.
  • 6Kennedy J,Eberhart R. Particle swarm optimization[A].Perth,WA:IEEE,1995.1942-1948.
  • 7Van den Bergh F. Particle swarm weight initialization in multilayer perception artificial neural networks[A].
  • 8Eberhart R,Y Shi. Particle swarm optimization: devel- opment, applications and resources[A].2001.81-86.
  • 9Clerc M. The Swarm and the Queen:Towards a Deter- ministic and Adaptive Particle Swarm Optimization[A].Washington:IEEE,1999.1951-1957.
  • 10龚纯;王正林.精通MATLAB最优化计算[M]北京:电子工业出版社,2009.

共引文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部