期刊文献+

基于改进粒子群算法的串列叶型优化设计 被引量:11

Optimization of Tandem Blade Based on Modified Particle Swarm Algorithm
下载PDF
导出
摘要 为了提高串列叶型优化设计的质量,设计了一套基于改进粒子群算法的串列叶型自动优化系统。研究了原始粒子群算法,提出了一种粒子群算法的改进方法。结果发现,改进粒子群算法的收敛速度和收敛精度明显优于原始粒子群算法和遗传算法。以50°大弯角串列叶型为研究对象,使用程序对串列叶型参数化。以叶型参数和串列叶型相对位置的参数作为优化变量,结合BP神经网络和改进粒子群算法对串列叶型进行优化设计。优化结果表明,优化后的叶型在设计攻角时的总压损失系数降低了22%,静压比升高了0.6%,在负攻角时,优化后的叶型的流动性能得到了明显改善。适当减小串列叶型前后缘的半径可以减小叶型的损失,合理的缝隙结构可以有效减小前排叶型压力面和后排叶型吸力面附面层的分离损失。 To improve the optimization design quality of tandem blade,an automatic optimization system of tandem blade was developed based on Modified Particle Swarm Optimization Algorithm(MPSO). The mechanism of original PSO was deeply researched and a modified method of PSO was presented. The performance of MPSO was compared with genetic Algorithm and original PSO. The comparison indicates MPSO can obtain better convergence speed and precision. An optimization system is developed based on BP neural network and MPSO.The optimization system is validated by optimizing a tandem blade of 50° blade turning. Both parameters of blade and parameters of relative position of tandem blade are treated as optimization variables. Results indicate that the total pressure loss coefficient of optimized blade decreases by 22% and the static pressure ratio increases by 0.6%at design incidence. The flow performance of optimized blade is improved at negative incidence. Decreasing the radius of leading and trailing edge properly can reduce the loss of tandem blade. Rational structure of the slot can effectively reduce separation loss of boundary layer on pressure surface of front blade and suction surface of rear blade.
出处 《推进技术》 EI CAS CSCD 北大核心 2016年第8期1469-1476,共8页 Journal of Propulsion Technology
基金 国家自然科学基金(51236006) 先进航空发动机协同创新中心资助
关键词 串列叶型 叶型优化 BP神经网络 粒子群算法 Tandem blade Blade optimization BP neural network Particle swarm algorithm
  • 相关文献

参考文献5

二级参考文献52

  • 1周正贵,吴国钏.自由流紊流度对串列叶栅性能的影响[J].航空动力学报,1996,11(1):1-3. 被引量:5
  • 2Burger G D, Keenan M J. Single stage evaluation of high- Iy-loaded high-Mach-number compressor stages. 3--Data and performance tandem rotor [R]. NASA-CR-72772, 1971.
  • 3Brent J A, Clemmons D R. Single-stage experimental evaluation of tandem airfoil rotor and stator blading for compressors, part 8 : final reportERS. NASA-CR-134713, 1974.
  • 4Bammert K, Staude R. Optimization for rotor blades of tandem design for axial flow eompressors[R]. ASME Paper 79-GT 125, 1979.
  • 5Bammert K, Beetle H. Investigation of an axial flow compressor with tandem cascade[R]. ASME Paper 80-GT- 83, 1980.
  • 6Bammert K, Staude R. New features in the design of axial-flow compressors with tandem blades[R]. ASME Paper 81-GT 113, 1981.
  • 7Wu G, Zhang B, Guo B. Experimental investigation of tandem blade cascade with double circular arc profile[R]. ASME Paper 85_IGT-94, 1985.
  • 8Sachmann J, Fother L. Highly loaded tandem compressor cascade with variable camber and stagger[R]. ASME Paper 93-GT-225, 1993.
  • 9Roy B, Saha U. K. Experimental analysis of controlled diffusion compressor cascades with single and tandem airfoils[R]. ASME Paper 95 CTP-41, 1995.
  • 10Roy B, Saha U K. On the application of variable camber blading axial flow fans and compressors[R]. ASME Paper 96 TA-58, 1996.

共引文献42

同被引文献79

引证文献11

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部