期刊文献+

钢铁企业副产煤气预测及优化调度 被引量:14

Prediction and optimal operation on byproduct gas system in steel enterprises
原文传递
导出
摘要 针对钢铁企业副产煤气系统产消量频繁波动,不平衡现象比较严重,供需之间的平衡程度对钢铁企业的生产成本、能源消耗情况影响较大,并且钢铁企业中工序、设备繁多,每道工序都涉及多种能源介质的问题,利用HP滤波、支持向量机分类(SVC)、最小二乘支持向量机(LSSVM)和Elman神经网络的特性建立了SVC-HP-ENNLSSVM模型,并根据用能设备的能源利用特点和预测结果对副产煤气进行优化调度。模型应用表明:所建预测模型对煤气系统的预测平均相对误差小于4%,满足工业生产需要。根据预测结果进行的优化调度解决了煤气系统的不平衡问题,应用于钢铁企业典型工况,主工序可降低10%左右能耗,应用其自备电厂(一年按照330天计算),可多产蒸汽约104 148 t,节能约9 998 208 kg标煤。 In iron and steel enterprises,the volume of byproduct gas system fluctuates frequently,the imbalance phenomenon is serious and the byproduct gas balance between supply and demand has enormous influence on the enterprise's production cost and energy consumption. There are various processes and equipment relating to variety of energy medium. Combined the property with support vector machine classification,the HP filter,Elman neural network and least squares support vector machine were applied to establish the SVC- HP- ENN- LSSVM forecasting model,and the optimization operation was made according to the characteristics of the energy-using equipment,energy utilization and the predicted results. The application of the model showed that the predicted average relative error values of byproduct gas were under the 4% which can meet the requirement of industrial production. The forecast results of optimization scheduling solved the imbalance of gas system,and when it was applied to the steel business typical working,about10% of main process energy consumes was saved. Assuming there are 330 days operation in a year,the self- provided power plant can produce more than 104 148 t steam which can save 9 998 208 kg standard coal.
出处 《钢铁》 CAS CSCD 北大核心 2016年第8期90-98,共9页 Iron and Steel
基金 国家自然科学基金资助项目(51066002/E060701) 云南省钢铁企业煤气系统预测及优化调度研究资助项目(KKSY201458118)
关键词 支持向量机分类 HP滤波 ELMAN神经网络 最小二乘支持向量机 优化调度 support vector classification(SVC) HP filter elman neural network(ENN) least squares support vector machine(LSSVM) optimal operation
  • 相关文献

参考文献19

  • 1ZHANG Qi, CAI Jiu-ju, WANG Jian-jun, et al. Reasonable utilization of byproduct gases in metallurgical industry[J].The Proceedings of the China Association for Science and Technolo- gy, 2007, 4(2):464.
  • 2张晓平,赵珺,王伟,冯为民,陈伟昌.转炉煤气柜位的多输出最小二乘支持向量机预测[J].控制理论与应用,2010,27(11):1463-1470. 被引量:10
  • 3张晓平,赵珺,王伟,丛力群,冯为民,陈伟昌.基于最小二乘支持向量机的焦炉煤气柜位预测模型及应用[J].控制与决策,2010,25(8):1178-1183. 被引量:19
  • 4ZHANG Xiao-ping, ZHAO Jun, WANG Wei, et al. An opti- mal method for prediction and adjustment on byproduct gas holder in steel industry[J]. Expert Systems with Applications, 2011,38(4): 4588.
  • 5Dutta G, Sirtha G P, Roy P, et al. A linear programming mod- el for distribution of electrical energy in a steel plant[J]. Interna- tional Transactions in Operational Research, 2003, 1(1).. 17.
  • 6Kim J H, Yi H S, Hart C. Optimal byproduct gas distribution in the iron and steel making process using mixed integer linear programming[C]//Proeeedings of International Symposium on Advanced Control of Industrial Processes. Kumamoto, Japan: [s.n.], 2002: 581.
  • 7Kim J H, Yi H S, Han C. A novel MILP model for plantwide multiperiod optimization of byproduct gas supply system in the iron and steel making process[J]. Chemical Engineering Re- search Design, 2003,81 (8): 1015,.
  • 8何大鹏,彭岚,李友荣.分时段运行工业锅炉房负荷的最优分配[J].重庆大学学报(自然科学版),2006,29(2):57-59. 被引量:4
  • 9Suykens J A K. Least squares support vector machines for clas- sification and nonlinear modeling[J]. Neural Network World, 2000, 10(1).. 29.
  • 10Hodrick R J, Prescott E C, Postwar U S. Business cycles: an empirical investigation[J]. Journal of Money, Credit and Bank- ing, 1997, 29: 1.

二级参考文献38

共引文献70

同被引文献162

引证文献14

二级引证文献69

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部