期刊文献+

华中区域模式三维变分中夏季背景误差协方差统计与对比试验 被引量:7

Statistics and comparative experiments for summer background error covariance in 3DVAR of central China regional model
下载PDF
导出
摘要 利用2012年6月12日—8月31日华中区域中尺度业务数值预报模式(WRF)一日两次的预报结果,采用NMC方法对背景误差协方差(B)进行了统计,得到了基于华中区域业务模式框架、分辨率和区域地理特征的夏季背景误差协方差矩阵的回归系数、特征向量、特征值以及特征长度尺度,并对模式三重嵌套各区域B的统计结构特征进行了对比,结果表明不同区域B的统计结构特征差异明显,表明B与模式区域地理特征和分辨率等关系密切。为探讨不同B对模式预报的影响,采用WRF模式自带的通用B矩阵(CV3-B)及本文统计得到的本地化B矩阵两种方案对2013年6—8月进行了批量试验和统计检验,结果表明:采用本地化B后,24 h小雨、中雨、大雨和48 h中雨、大雨、暴雨降水预报TS评分皆有所提高。850 h Pa风、温度及2 m温度等要素场预报的均方根误差减小,但500 h Pa高度场均方根误差略有加大。暴雨个例的分析表明:不同B方案,对初值影响非常显著,本地化B方案分析的初值场更趋合理,因而改进了降水预报。 Based on twice-a-day forecast products of central China operational numerical model, a statistic calculation of the background error covariance(B) is conducted using the NMC method to obtain the regression coefficients, eigenvectors, eigenvalues and length-scales of summer B matrix with features of China central operational model framework, resolution and regional geography. The contrast analyses of the statistical structure characteristics of B in each triple-nested model domain denotes that B in different domain is of obvious difference, which indicates B has a close relationship with the regional geographical feature and model resolution. In order to investigate the impact of different upon the model forecasts, batch experiments and statistical verifications in the period from June to August 2013 are performed with the universal background error covariance CV3-B of the WRF model and the statistically-obtained localized background error covariance. The results indicate that, when using the localized, the threshold scores of the 24-h forecasts of light rain, moderate rain, and heavy rain and the48-h forecasts of moderate rain, heavy rain, and torrential rain are higher than those when using the CV3-B. The root mean square error of meteorological element fields forecast such as 850-h Pa wind and temperature and 2-meter temperature is decreased. The root mean square error of 500-h Pa height is, however, increased. Analysis for a torrential rain case shows that different B has significant influence on model ini-tial fields. The localized gives a more reasonable initial field and therefore improves the rainfall forecasts.
出处 《暴雨灾害》 2016年第4期359-370,共12页 Torrential Rain and Disasters
基金 国家自然科学基金(41405106) 公益性行业专项(GYHY201306016) 厦门市科技惠民计划项目(3502Z20164080)
关键词 数值预报模式 背景误差协方差 NMC方法 降水 初值 numerical model background error covariance NMC method rainfall initial field
  • 相关文献

参考文献26

  • 1Rutherford I D. Data assimilation by statistical interpolation of forecast error fields [J]. J Atmos Sci, 1972, 29:809-815.
  • 2Bouttier F. Application of Kalman filtering to numerical weather predic- tion// Proceedings of the 1996 ECMWF seminar on data assimilation. 1996, ECMWF:Reading, UK,61-90.
  • 3Cardinali C, Pezzulli S and Anderson E. Influence - matrix diagnostic of a data assimilation system [J]. Quarterly Journal of Royal Meteorology Society, 2004, 130:2 767-2 786.
  • 4Parrish D F, Derber J C. The National Meteorological Center' s spectral statistical interpolation analysis system [J]. Mon Wea Rev, 1992, 120: 1 747-1 763.
  • 5Gustafsson N, Berre L, Hornquist S, et al. Three-dimensional variational data assimilation for a limited area model [J]. Tellus, 2001, 53A:425-446.
  • 6邱崇践.变分同化中使用背景场时尺度匹配的数值研究[J].大气科学,2001,25(1):103-110. 被引量:7
  • 7Rabier F, Mcnally A, Andersson E, et al. The ECMWF implementation of three-dimensional variational assimilation (3D-Var). II: Structure functions [J]. Quart J Roy Meteor Soc, 1998, 124:1 809-1 829.
  • 8Wu W S, Rurser R J, Parrish D F. Three-dimensional variational analy-sis with spatially inhomogeneous covariances [J]. Mon Wea Rev, 2002, 130(12):2 905-2 916.
  • 9龚建东,赵刚.全球资料同化中误差协方差三维结构的准确估计与应用Ⅱ:背景误差协方差调整与数值试验分析[J].气象学报,2006,64(6):684-698. 被引量:22
  • 10庄照荣,薛纪善,庄世宇,朱国富.资料同化中背景场位势高度误差统计分析的研究[J].大气科学,2006,30(3):533-544. 被引量:19

二级参考文献222

共引文献279

同被引文献106

引证文献7

二级引证文献41

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部